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What is the BPH Theorem?

The BPH theorem states that the divergences of local polynomial
quantum field theories can be absorbed into local monomials
(counterterms) in the action to all orders in perturbation theory.

It does not say that there are only a finite number of such counterterms,
or make any claims about their dimension.

Can be Renormalized 6= Renormalizable.

If the assumptions of the theorem are not met it does not say that the
theory cannot be renormalized.

There needs to be some regulator to make the manipulations well-defined.
It is possible to define a subtracted integrand such that all the loop
integrals are absolutely convergent (Zimmermann forests, BPHZ), but
without a regulator these cannot be directly related to the underlying
Lagrangian (so properties like unitarity are not obvious).
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Ancient History

Dyson (1949) (Power counting)

Stückelberg and Green (1951)

Bogol�bov and Paras�k (1957) (R operation)

Hepp (1966) (Proof of BPH theorem)

“Unfortunately the papers of BOGOLIUBOV and PARASIUK
come close to not satisfying SALAM’s criterion: it is hard to find
two theoreticians whose understanding of the essential steps of
the proof is isomorphic. This is articularly regrettable, since the
very ingenious and elaborate treatment of the authors is the
most general discussion of renormalization in Lagrangian
quantum field theory.”

“Unfortunately the argument relies on a splitting of the testing
functions . . . which is in general impossible.”
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Slightly More Recent History

Hahn and Zimmermann (1968) (Small momentum cutoff)

Epstein and Glaser (1973)

Anikin, Polivanov, and Zav~�lov (1973) (Equivalence to
counterterms)

Lowenstein and Speer (1976) (Euclidean ⇒ Minkowski convergence)

Tarasov and Vladimirov; Qetyrkin, Kataev, and Tkaqev (1980)
(Differentiation with respect to external momenta)

Symanzik (1981) (Schrödinger functional)

Caswell and Kennedy (1982, 1983) (Henges)

A D Kennedy BPH Renormalization in Momentum Space



T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Introduction
Graphical Definitions

The R Operation
Convergence Proof

Equivalence to Counterterms
Power Counting

Applications

History
Motivation and Goals

Motivation

Hepp’s proof still has a fairly small “Salam number” — the number of
theoreticians who understand the proof; indeed, it is not even obvious
what sign the time derivative of this quantity has.

It would be nice to have a method of proof which was simple enough that
more people might understand it, and perhaps apply it to new problems.
(This is probably wishful thinking).

The momentum-space proof is directly applicable to lattice perturbation
theory, where Feynman parametrization is not applicable. In particular, the
proof works for staggered fermions.
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What Else?

It can also be used to prove

Operator renormalization, and the operator product expansion.

The cutoff dependence of an L loop lattice Feynman diagram is bounded
by a(ln a)L, where a is the lattice spacing.

The decoupling theorem, that all the effects of heavy particles can be
absorbed into a renormalization of the interactions of light particles for
external momenta at the light scale, up to powers of the mass ratio
(subject to suitable power-counting conditions).

That Zimmermann oversubtraction can reduce the cutoff dependence at
the expense of introducing “non-renormalizable” interactions with explicit
supression by powers of the cutoff. In particular, this justifies Symanzik
improvement (removal of O(a`) effects in lattice perturbation theory).

Renormalization of quantum field theories with boundaries (Schrödinger
functional). (Work in progress with Stefan Sint).
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Graphs and Integrals

A graph is connected if it cannot be partitioned into two sets of vertices
which are not connected by an edge.

A graph is one particle irreducible (1PI) if it remains connected after
removing any edge. A single vertex is a 1PI graph.

A Feynman integral I (G) may be associated with any graph G by means of
the Feynman rules for the theory. A propagator is associated with each
line, a factor with each vertex, and a D-dimensional momentum integral
with each independent closed loop.

I (G) is a function of the external momenta p, the lightest mass m (we
assume m > 0 to avoid infrared divergences), some dimensionless
couplings, and a cutoff Λ which is introduced to make the theory well
defined.

We extend the mapping I : G 7→ I (G) to act linearly on sums of graphs.

For simplicity we only consider Euclidean space.
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Diagrammatic Differentiation

It is useful to consider the derivative of a Feynman diagram with respect
to its external momenta. This is drawn diagrammatically as

∂� =F+G+H+I+J
+K+L+M+N .

Note that we view crossed and double crossed lines and vertices as
associated with new Feynman rules: although one might view the cross as
a new vertex inserted into a line this notation is not adequate in general
when vertices (including such crosses themselves) have a non-trivial
momentum dependence.
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Further Diagrammatic Differentiation

The second derivative is

∂2�=O+2P+2Q+2R+2S+2T+2U
+2V+2W+X+2Y+2Z+2[+2\+2]
+2^+2_+`+2a+2b+2c+2d+2e
+2f+g+2h+2i+2j+2k+2l+m
+2n+2o+2p+2q+r+2s+2t+2u

+v+2w+2x+y+2z+{.
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Taylor’s Theorem

Each of the graphs shown above is really a sum over all the components of

all the independent external momenta, I (∂G) =
∂I (G)
∂pµ

,

I (∂2G) =
∂2I (G)
∂pµ∂pν

, etc.

Viewing I (G) as a function of its external momenta repeated application of
the fundamental theorem of calculus gives us Taylor’s theorem. In our
notation

I (p) = TnI (p) +

∫ p

p0

dp1

∫ p1

p0

dp2 . . .

∫ pn−1

p0

dpn ∂
nI (pn),

where

TnI (p) ≡
n∑

j=0

(p − p0)j

j!
∂ j I (p0)

=
n∑

j=0

∑
µ1,...,µj

(p − p0)µ1 . . . (p − p0)µj

j!

∂ j I (p0)

∂pµ1 . . . ∂pµj

.
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Diagrammatic Definition of Henges

Any graph may be decomposed into a set of disjoint 1PI components and
a set of edges which do not belong to any 1PI subgraph.

Selecting any line from a graph defines a henge, which is just the set of
1PI components of the graph with the specified line removed. An example

of a henge isB, where the heavy lines indicate the set of 1PI

subgraphs in the henge corresponding the light line.

The set of all henges for a four-loop contribution to the two-point function
of φ3 theory is=,>,?,@,A,B,C,D

;

the henges H(G, `) shown as heavy lines correspond to ` being any of the
light lines.
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Henges and Feynman Integrals

We shall write G/H to indicate the graph obtained by shrinking each 1PI
subgraph Θ in H to a point.

If G is a 1PI graph and ` ∈ G some edge, then G may be considered as a
single loop G/H(G, `) with the 1PI subgraphs in the henge H(G, `) acting

as “effective vertices.” For the example above the graph G/H is�.

We define Iλ(G) to be the Feynman integral corresponding to G where all
the lines carry momentum greater than λ; that is |k`| > λ (∀` ∈ G)
where we use the usual Euclidean norm. This corresponds to Feynman
rules in which an extra step function θ(k2

` − λ2) is associated with each
line.

iλ(G) is the integrand of the graph G.

iλ(G/H) is the integrand of the graph G with all the 1PI subgraphs in H
removed (i.e., set to unity).

A D Kennedy BPH Renormalization in Momentum Space
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Definition of the R operation

We now apply the simple momentum space decomposition which says that
at every point in the space of loop momenta k some line has to be
carrying the smallest momentum:

Iλ(G) =
∑
`∈G

∫ ∞
λ

dk ik
(
G/H(G, `)

) ∏
Θ∈H(G,`)

Ik(Θ).

For each henge all possible subdivergences of I (G) must live within one of
the “effective vertices,” so it is most natural to define the R̄ operation,
which subtracts all subdivergences, as

R̄Iλ(G) ≡
∑
`∈G

∫ ∞
λ

dk ik
(
G/H(G, `)

) ∏
Θ∈H(G,`)

RIk(Θ),

where R is the operation which subtracts all divergences

RIλ(G) ≡ R̄Iλ(G)−KR̄I0(G).

A D Kennedy BPH Renormalization in Momentum Space
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The Subtraction Operation −K

The subtraction operator −K removes the divergent part of I (G). Various
choices are possible

For minimal subtraction −KI (G) subtracts the pole terms in the Laurent
expansion of I (G) in the dimension D. In this case the BPH theorem
states that these subtractions are local; i.e., polynomial in the external
momenta p.

K can be chosen to be the Taylor series subtraction operator T deg G I (G)
with respect to the external momenta p, where deg G is the overall (power
counting) degree of divergence of G. In this case the BPH theorem states
that the subtracted Feynman integrals are convergent, i.e., they have a
finite limit as the cutoff Λ→∞.

A D Kennedy BPH Renormalization in Momentum Space
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Properties of the Subtraction Operation

The subtraction operation commutes with differentiation:
For minimal subtraction [∂,K] = 0 trivially.
For Taylor series subtraction ∂T n = T n−1∂ but, as we shall see,
deg ∂G = deg G − 1, so [∂,T deg] = 0.

Strictly speaking we define −K to replace the divergent part with a finite
polynomial of degree deg G in the external momenta.

The finite part of a subtracted graph is specified unambiguously by some
set of renormalization conditions, which fix the values of
I (p0), ∂I (p0), . . . , ∂deg G I (p0) at the subtraction point p0.

If V is a single vertex then it is convenient to define KI (V) = −I (V),
R̄I (V) = I (V), and RI (V) = −KR̄I (V) = I (V).

A D Kennedy BPH Renormalization in Momentum Space
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Bounding Inequalities

We require tree level bounds with the following properties:
All vertices and propagators Γ satisfy

|Iλ(Γ)| ≤ c · χ(λ)deg Γ,

where c is a constant, and the overall degree of divergence deg Γ is a
number which will be used for power counting.
The monotonically increasing bounding function χ must satisfy∫ ∞

λ
dk χ(k)ν ≤ c · χ(λ)ν+1 (ν + 1 < 0)∫ λ

0
dk χ(k)ν ≤ c · χ(λ)ν+1+0 (ν + 1 ≥ 0)

Differentiation with respect to external momenta must lower the degree of
divergence, deg(∂G) = deg G − 1. This means that we also require that all
derivatives of vertices and propagators must satisfy the bounds

|∂nIλ(Γ)| ≤ c · χ(λ)deg Γ−n.

All external momenta and all masses are proportional to m.

A D Kennedy BPH Renormalization in Momentum Space
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Bounding Functions

All these conditions are met by

χ(k) ≡ max(m, k) =

{
m 0 ≤ k < m
k m ≤ k <∞

This is trivially established by splitting up the integration region

∫∞
λ

dk max(m, k)ν =

{ ∫ m

λ
dk mν +

∫∞
m

dk kν λ < m∫∞
λ

dk kν λ ≥ m

≤ c ·max(m, λ)ν+1 ν < −1

∫ λ
0

dk max(m, k)ν =


∫ λ

0
dk mν λ < m∫ m

0
dk mν +

∫ λ
m

dk kν λ ≥ m

≤ c ·max(m, λ)ν+1+0 ν ≥ −1

A D Kennedy BPH Renormalization in Momentum Space
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Lattice Bounds

As an simple example,
consider the one
dimensional propagator
∆ = (k̃2 + m2)−1 where
k̃ =

∣∣ 2
a

sin ak
2

∣∣.
Using the inequalities
2
π
|q| ≤ | sin q| ≤ |q| within

the Brillouin zone
−π

2
≤ q ≤ π

2
we find that

|∆| ≤
(π

2

)2

max(k,m)−2.

Likewise, since | cos q| ≤ 1
we have∣∣∣∣∂∆

∂k

∣∣∣∣ ≤ π4

8
max(k,m)−3.

0 1
k

0

1

sin x
x
2x/π

0 1 2 3 4
k

(k
2
+m

2
)

−1

[sin(k/2)
2
+m

2
]

−2

c max(k,m)
−2

Note that lattice propagators and vertices
vanish outside the Brillouin zone,
|k| > π/a.

On the lattice we subtract polynomials in
p̃ rather than polynomials in p.
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Induction Hypothesis

Induction hypothesis:

|RIλ(G)| ≤ c · χ(λ)deg G+0

for all graphs with less than L loops.
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Proof for Overall Convergent Diagrams

Overall convergent diagram with L loops:

Use the definition of R̄

|R̄Iλ(G)| ≤
∑
`∈G

∫ ∞
λ

dk |ik(G/H)|
∏

Θ∈H(G,`)

|RIk(Θ)|.

Use the induction hypothesis for the subgraphs Θ and the tree level bounds

|R̄Iλ(G)| ≤ c ·
∑
`∈G

∫ ∞
λ

dk χ(k)deg(G/H)−1
∏

Θ∈H(G,`)

χ(k)deg Θ+0

= c ·
∑
`∈G

∫ ∞
λ

dk χ(k)deg G−1+0.

Integrate the bounding function

|R̄Iλ(G)| ≤ c · χ(λ)deg G+0 (deg G < 0).

This establishes the induction hypothesis, since RIλ(G) = R̄Iλ(G) in this
case.

A D Kennedy BPH Renormalization in Momentum Space
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Proof for Overall Divergent Diagrams

Overall divergent diagrams with L loops:

Taylor’s theorem for the function R̄I0(p) gives

R̄I0(p) = T deg GR̄I0(p) +

∫ p

p0

dp1 . . .

∫ pdeg G

p0

dpdeg G+1 ∂
deg G+1R̄I0 (pdeg G+1) .

Since R̄ and ∂ commute (this follows from the equivalence of our
definition of R with Bogoliubov’s, which we will establish later)

R̄I0(p) = T deg GR̄I0(p) +

∫ p

p0

dp1 . . .

∫ pdeg G

p0

dpdeg G+1 R̄∂deg G+1I0 (pdeg G+1) .

The (sum of) graphs ∂deg G+1I0(G) are overall convergent which we will
show are absolutely convergent.

The integral is over a compact region, so any divergences must be in the
polynomial part.

A D Kennedy BPH Renormalization in Momentum Space
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Proof for Overall Divergent Diagrams — UV Part

Using the definition of R, the polynomial T deg GR̄I0(p) is replaced by a
finite polynomial in the external momenta specified by the renormalization
conditions. This polynomial satisfies the tree level bounds, so

|RI0(p)| ≤ c ·χ(0)deg G+

∫ p

p0

dp1 . . .

∫ pdeg G

p0

dpdeg G+1

∣∣∣R∂deg G+1I0 (pdeg G+1)
∣∣∣ .

Use the inductive bound on the overall convergent integrand

|RI0(p)| ≤ c · χ(0)deg G +

∫ p

p0

dp1 . . .

∫ pdeg G

p0

dpdeg G+1 c · χ(0)−1+0

≤ c · χ(0)deg G+0.

We have thus proved that RI0(G) is made finite by local subtractions, but
we still need to establish the induction hypothesis.

A D Kennedy BPH Renormalization in Momentum Space
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Proof for Overall Divergent Diagrams — IR Part

In the definition of R̄I0(G) we may split the integration region∫∞
0

dk =
∫ λ

0
dk +

∫∞
λ

dk, hence

R̄I0(G) = R̄Iλ(G) +
∑
`∈G

∫ λ

0

dk ik(G/H)
∏

Θ∈H(G,`)

RIk(Θ).

Subtract K R̄I0(G) from both sides,

RI0(G) = RIλ(G) +
∑
`∈G

∫ λ

0

dk ik(G/H)
∏

Θ∈H(G,`)

RIk(Θ).
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Establishing the Induction Hypothesis for L Loops

Finally, all we need to do is to bound the integral over the “infrared region”

|RIλ(G)| ≤ |RI0(G)| +
∑
`∈G

∫ λ

0

dk |ik(G/H)|
∏

Θ∈H(G,`)

|RIk(Θ)|

≤ c · χ(0)deg G+0 + c ·
∑
`∈G

∫ λ

0

dk χ(k)deg(G/H)−1
∏

Θ∈H(G,`)

χ(k)deg Θ+0

≤ c · χ(0)deg G+0 + c ·
∑
`∈G

∫ λ

0

dk χ(k)deg G−1+0

≤ c · χ(0)deg G+0 + c · χ(λ)deg G+0 ≤ c · χ(λ)deg G+0 (deg G ≥ 0).

A D Kennedy BPH Renormalization in Momentum Space
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Connection with Hepp’s Proof

Hepp’s proof divides the space of Feynman parameters x1, . . . , xN into
sectors in which the parameters have a definite ordering, e.g.,
x1 > x2 > · · · > xN .

Feynman parameters are introduced using the identity∫ 1

0

dx1 dx2 dx3
δ(1− x1 − x2 − x3)

[x1A1 + x2A2 + x3A3]3
=

1

A1A2A3
.

If we consider the corresponding integral restricted to a sector we obtain∫ 1

0

dx1 dx2 dx3
δ(1− x1 − x2 − x3)θ(x1 > x2 > x3)

[x1A1 + x2A2 + x3A3]3

=
1

A1(A1 + A2)(A1 + A2 + A3)
≤ 1

A3
1

.

Thus each sector corresponds to an ordering of the magnitude of the
propagators 1/Aj just as the Henge decomposition does.
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Equivalence to Bogoliubov’s Definition

A spinney is a covering of a graph by a set of disjoint 1PI subgraphs.

Single vertices are allowed as elements of spinneys: in other words, all the
vertices of a graph are included in a spinney, but not necessarily all of the
edges.

The wood W(G) is the set of all spinneys for a graph G.

Every henge is a spinney, but not vice versa.

We shall use the notation I
(
G/S ?

∏
Θ∈S f (Θ)

)
to mean the Feynman

integral for the graph G/S where the function f (Θ) is the Feynman rule
for the “effective vertex” Θ.

The proper wood W̄(G) is just the wood with the spinney S = G omitted.
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Example of a Wood

The following is an example from φ3 theory

W

�
=

�,�, ,!,",#,$,%,

&,',(,),*,+,,,-,

.,/,0,1,2,3,4,5,

6,7,8,9,:,;,<,=,

>,?,@,A,B,C,D,E

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Bogoliubov’s Definition

Bogoliubov’s definition of the R operation is

R̄B I (G) ≡
∑
S∈W̄(G)

I

(
G/S ?

∏
Γ∈S

−KR̄B I (Γ)

)
,

RB I (G) ≡ (1− K)R̄B I (G) =
∑
S∈W(G)

I

(
G/S ?

∏
Γ∈S

−KR̄B I (Γ)

)
.

This is easily shown (caveat emptor) to be be equivalent to our definition.

The definition can be made even more explicit and less recursive using
Zimmermann’s forest notation: however it is easier to construct proofs and
write programs to automate renormalization using recursive definitions.

In Bogoliubov’s form it is manifest that [∂,R] = 0, because
[∂,K] = 0.
The definition of R is purely graphical, and the graphical structure is not
changed by differentiation.
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Equivalence to Counterterms

We shall show that the subtractions made by the R operation are
equivalent to the addition of counterterms to the action. As this is a
purely combinatorial proof it is convenient to use the generating functional

Z(J) =

∫
dφ e−S(φ)+Jφ = exp

[
−SI

(
δ
δJ

)]
e

1
2
J∆JZ(0),

where S(φ) = 1
2
φ∆−1φ+ SI (φ).

Perturbation theory may be viewed as an expansion in the number of
vertices in a graph,

Z(J) ∼
∞∑
n=0

(−)n

n!

[
SI

(
δ
δJ

)]n
e

1
2
J∆JZ(0)

=
∞∑
n=0

(−)n

n!

∑
Gn

I
(
Gn(J)

)
Z(0);

where the last sum is over all graphs Gn containing exactly n vertices and
which have J attached to their external legs.
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Generating Functional for Renormalized Graphs

We define the renormalized generating functional as

RZ(J) =
∞∑
n=0

(−)n

n!

∑
Gn

RI (Gn)Z(0)

=
∞∑
n=0

(−)n

n!

∑
Gn

∑
S∈W(Gn)

I

(
G/S ?

∏
Γ∈S

−KR̄Γ

)
Z(0).
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Generating Functional for Renormalized Graphs

Using the identity∑
Gn

∑
S∈W(Gn)

∏
Γ∈S

−KR̄Γ =
∑

r0,...,rn
r0+···+rn=n

n!∏n
j=0 j!rj rj !

n∏
j=0

[∑
Gj

−KR̄I (Gj)

]rj

where the last sum is over all graphs Gj with exactly j vertices, we obtain
that RZ(J) is

=
∞∑
n=0

(−)n

n!

∑
r0,...,rn

r0+···+rn=n

n!∏n
j=0 j!rj rj !

n∏
j=0

[∑
Gj

−KR̄I
(
Gj

(
δ
δJ

))]rj

e
1
2
J∆JZ(0)

=
∞∏
j=0

∞∑
rj =0

1

rj !

[
1

j!

∑
Gj

KR̄I
(
Gj

(
δ
δJ

))]rj

e
1
2
J∆JZ(0)

=
∞∏
j=0

exp

[
1

j!

∑
Gj

KR̄I
(
Gj

(
δ
δJ

))]
e

1
2
J∆JZ(0) = exp

[
KR̄eSI ( δδJ )

]
e

1
2
J∆JZ(0).
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Generating Functional for Renormalized Graphs

We have shown that RZ(J) =

∫
dφ e−SB (φ)+Jφ, with the bare action SB

SB(φ) = 1
2
φ∆−1φ− KR̄eSI (φ).

Observe that there is no simple one to one correspondence between
countergraphs and subtractions, but that the combinatorial factors arrange
themselves correctly.

The counterterms are monomials in the bare action, and we draw the
fields φ or functional derivatives δ

δJ
by open circles at the end of the

amputated external legs.

Such graphs are symmetric under interchange of their external legs.

Appropriate combinatorial factors must be used for each graph.
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Examples of Counterterms

Some of the counterterms in φ3 theory in d dimensions are

� = 1
2
�+ 1

4
�+···

� = 1
2
�+ 1

2
�+
+···

� = �+ 3
2
�+ 3

4
�+···

� = 3�+···

� = 12�+··· .
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Correspondence Between Subtractions and Counterterms

The countergraphs built using these counterterms correspond to subtractions in
the following non-trivial way:

1
2
� 1

2
� 1

2

 � �

1
2
� 1

2
� 1

2
� 1

2
� 1

2
�

1
2
�

1
2
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+ 1
2
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1
2
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Power Counting — Graph Theoretic Properties

Consider a connected Feynman diagram G in a D dimensional field theory
with an arbitrary polynomial action.

Let it have Ia lines of type a, Vb vertices of type b, and Ea external legs of
type a.

Let nab be the number of lines of type a which are attached to vertex b,
d ′b be the degree of this vertex, and da be the degree of lines of type a.

Every line has to end on an appropriate vertex∑
b

nabVb = Ea + 2Ia, ∀a.

We require exactly V − 1 lines to connect V vertices into a tree; every
extra line produces a loop. Hence

L = I − V + 1 =
∑

a

Ia −
∑

b

Vb + 1.
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Overall Degree of Divergence

The overall degree of the graph can be obtained by counting,

deg G = LD +
∑

b

Vbd ′b +
∑

a

Iada.

Eliminate L and Ia from these equations to obtain

deg G =
∑

b

Vb

[
1
2

∑
a

{nab(D + da)}+ d ′b − D

]
− 1

2

∑
a

Ea(da + D) + D.
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Field and Monomial Dimensions

The dimension of the field φa is defined such that the dimension of its
kinetic term in the action vanishes; that is, dimφa ≡ 1

2
(da + D).

The dimension of the monomial Vb in the action corresponding to the
vertex of type b may be defined to be

dimVb ≡
∑

a

nab dim(φa) + d ′b − D.

This gives

dimVb = 1
2

∑
a

nab(da + D) + d ′b − D.

We thus obtain

deg G =
∑

b

Vb dimVb −
∑

a

Ea dimφa + D.
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Power Counting Results

The theory is superrenormalizable, that is has only a finite number of
overall divergent graphs, if the coefficients of Vb are negative:
dimVb < 0 (∀b).

The theory is renormalizable, that is only a finite number of Green’s
functions are overall divergent, if the none of the coefficients of Vb are
positive, dimVb ≤ 0 (∀b), and all the coefficients of Ea are positive,
dimφa > 0 (∀a).

In general, all local monomials of dimension ≤ 0 will be required as
counterterms.

If the regulator and renormalization conditions preserve a symmetry then
only symmetric counterterms will be required.

If the symmetry is softly broken, i.e., by monomials of dimension < 0, then
only counterterms of equal or lower dimension are required (Symanzik).
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Operator Insertions

Let Ω(φ) be an operator which is local and polynomial in the field φ.

Add a source term for Ω into the action,

Z(J, J ′) ≡
∫

dφ e−S(φ)+Jφ+J′Ω(φ).

The BPH theorem tells us that this theory can be renormalized by adding
local counterterms of the form

SI (φ)− J ′Ω(φ) + ∆S(φ, J ′) = −KR̄ exp
[
SI (φ)− J ′Ω(φ)

]
.

Expanding in powers of J ′ gives

−J ′Ω(φ) + ∆S(φ, J ′) = ∆S(φ, 0) + J ′KR̄
[
eSI (φ)Ω(φ)

]
+ O(J ′

2
).
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Operator Renormalization and Operator Product Expansion

We may associate these counterterms with the operator to define a
renormalized operator

N(Ω) ≡ −KR̄
[
eSI (φ)Ω(φ)

]
.

Power counting tells us that

deg G = VΩ dim Ω +
∑

b

Vb dimVb −
∑

a

Ea dimφa + D,

where VΩ are the number of Ω vertices in G.

As we are interested in a single insertion of Ω we only care about
counterterms linear in J ′, and these get contributions only from diagrams
G with VΩ = 1. Thus deg G ≤ dim Ω + D, for a renormalizable theory,
which means that we only get counterterms of dimension ≤ dim Ω.

Analogous arguments easily establish the operator product expansion.
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Symanzik Improvement

Zimmermann observed that if we oversubtract by removing more than
deg G + 1 terms from the Taylor series in the external momenta then we
reduce the cutoff dependence at the cost of introducing more
counterterms.

These extra counterterms are of higher dimension, but have explicit
inverse powers of the momentum cutoff. It is easy to generalize Dyson’s
power-counting rules to take this into account by counting explicit cutoff
factors as having dimension one.

Following Symanzik we can improve the lattice action by such
oversubtraction, but as the lattice Feynman rules explicitly depend upon
the (inverse) cutoff a we must also subtract tree graphs.

A simple modification of the induction hypothesis establishes that this
procedure works to all orders in perturbation theory.

The expansion in powers of a for the improved action is only an
asymptotic series, so in general it does not permit us to keep cutoff effects
small while making a larger.
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Bounds on Cutoff Effects

In our proof we added an arbitrarily small power ε to our bounds to handle
logarithmic divergences correctly.

If we refine our bounds on the integrals of bounding functions∫
dk kn(ln k)r ≤ c

{
kn+1(ln k)r n 6= −1
kn+1(ln k)r+1 n = −1

(hint: expand the previous bounds in powers of ε) then we can obtain
slightly tighter bounds.

This establishes that the cutoff effects for an L-loop graph with O(as)
Symanzik-improved actions are bounded by as+1(ln a)L.

More precisely, the power of ln a is equal to the maximum number of
nested subgraphs of dimension zero.
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Decoupling Theorem

The decoupling theorem is also an application of Zimmermann
oversubtraction.

Suppose we have a Lagrangian with light particles of mass m and heavy
particles of mass M � m.

Use bounds of form χ(k) = max(k,m,M) for heavy particles and vertices
that depend explicitly on M.

We require tree graph subtractions, just as for Symanzik improvement
(but here even in the continuum).

For gauge symmetries we need Ward identities for 1LPI diagrams
(presumably true for Symanzik improvement too).
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Renormalization of the Schrödinger Functional

Work in progress (caveat emptor), in collaboration with Stefan Sint.

Coupling “constants” do not have to be constant; for example background
field interactions such as coupling to a source

∫
dx φ(x)J(x).

Impose (Dirichlet) boundary conditions by adding a wall interaction into
the action, (c = ±1 + O(~))

S =

∫
dx

[
1

2
φ(−∂2 + m2)φ+

1

4!
λφ4 + cφ(x0 − 0)δ′(x0 − w)φ(x0 + 0)

]
.

Regulate this by smearing the wall into a narrow Gaussian f (x).

In momentum space we get the vertex cφ̃(−k)φ̃(k + p)p0 f̃ (p) where f̃ is a
broad Gaussian. Point-splitting in x-space becomes an infinitesimal phase
factor, which is preserved by renormalization.

This has power-counting dimension 2 (p is an external momentum).

In four dimensions the worst divergence is quadratic, so more than one
insertion of c vertex is overall convergent.

Single insertion of c vertex is proportional to p0 f̃ (p), so the counterterm
lives on the wall.
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