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Motivation Need light quarks and big boxes because

Chiral pert. theory slowly convergent

Direct K → ππ decay calculations require large volume
(talks by C. Sachrajda, Q. Liu, and N. Christ)

Longstanding problems in nucleon structure calculations (gA,
momentum fraction, helicity fraction, form factors, ...)

EM properties of hadrons in QCD+QED (talk by T. Izubuchi)

Hadronic corrections to muon g − 2

...
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Iwasaki-Dislocation Suppressing Determinant Ratio
(I-DSDR)

Take advantage of good chiral properties of DWF

Small quark mass, so large volume

Large lattice spacing (OK for DWF)

But residual mass gets big for conventional gauge actions
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DWF and residual χ SB

The residual mass mres [Furman and Shamir (1995), Blum (1998)]

A small additive shift to the bare quark mass due to finite size

of the extra dimension of DWF, Ls

mres ≡
∑
t�a

〈J5qJ5(t)〉
〈J5J5(t)〉

Falls off exponentially with Ls if gauge fields are smooth enough

[Shamir (1993); Hernandez, Jansen, Lüscher (1999); Neuberger (2000)]

T =
1−H
1 +H

H =
1

2 +DW (−M5)
γ5DW (−M5)

unless T has a unit eigenvalue
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Low modes of DW and explicit χ SB in DWF

Low modes of Wilson (DWF) Dirac operator near (+)−M5 re-

sponsible for χ symmetry breaking in DWF Edwards, Heller, Narayanan

(1999); Hernandez, Jansen, Lüscher (2000); Orginos (RBC Collaboration) (2002); Hernan-

dez, Jansen, Nagai (2002); A. Aoki, et al (RBC Collaboration) (2004);

Low modes→ mres ∼ 1/Ls [Golterman and Shamir (2003); RBC (2007)]

Low modes supported by “dislocations”, or small lattice artifact

“instantons”

Suppress dislocations → reduce χ SB

These dislocations, with large topological charge density, are

topology-changing gauge configurations, and cause a complete

reordering of the (Dirac) spectrum: χ SB
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Low modes of DW (Quenched, a−1 ≈ 2 GeV)

Iwasaki suppresses low modes in the gap. Gap is also larger.
At strong coupling gap closes: Aoki phase [Aoki (1980)]

behavior can be fit with two exponentials with a rather weak
decay in the largeLs limit. Thus, to decreasemresby an order
of magnitude we need to increaseLs by a large factor, per-
haps ofO(10).

Sincemres is determined by the fifth-dimensional falloff
of the boundary states, decreasingmres requires improving
the falloff. Analytic arguments have shown that for gauge
field satisfying a smoothness condition, exponential falloff is
assured@28,29#. It is expected that at weak enough cou-
plings, such a smoothness condition is satisfied, which is not
the case for Wilson gauge lattices atb56.0. Since the falloff
in the fifth dimension can be related to eigenvalues of an
appropriately defined transfer matrix,T, in the fifth dimen-
sion, studies@30# of the spectrum of theT for Wilson gauge
action have been done. They find a nonvanishing density of
unit or near unit eigenvalues ofT, showing that undamped
propagation in the fifth dimension occurs. We will also study
the spectrum ofT, using gauge configurations generated with
the Wilson, Symanzik, Iwasaki and DBW2 actions.

The transfer matrixT @31# is defined by

T5
12Ht

11Ht
~15!

with

Ht5
1

21Dw
† ~2M5!

g5Dw~2M5! ~16!

being the Hamiltonian for propagation in the fifth dimension
andDw(m) being the four-dimensional Wilson Dirac opera-
tor. Following @30# we calculate the eigenvalue spectrum of
the Hermitian Wilson Dirac operatorg5Dw(2M5) as a func-
tion of M5 ~the so-called spectral flow!. From Eq.~16! one
sees that a zero eigenvalue ing5Dw(2M5) corresponds di-
rectly to a unit eigenvalue of the transfer matrix, i.e., the
existence of a five-dimensional mode that is not damped in
the fifth dimension. In addition, the number of zeros in the
spectral flow determines the index of the domain wall fer-
mion operator and hence serves as a definition of topology
on the lattice. Thus, if one is working at a fixed value forM5
and a gauge field is generated via Monte Carlo which has a
unit eigenvalue ofT, an undamped mode in the fifth dimen-
sion occurs on that configuration. This configuration is one
where we informally say that topology is changing~in the
Monte Carlo update!.

When studying the spectral flow on a given configuration,
if the flow approaches theM5 axis, we expect the left and
right domain wall modes to become delocalized leading to
mixing and attendant chiral symmetry breaking. On the other
hand, if there is a large vertical gap in the spectral flow for
values ofM5 we use in our simulations, the chiral modes
should remain localized on the boundaries. In Fig. 2 we
present the spectral flow of the lowest 15 eigenvalues for
some representative Wilson gauge action configurations.
Many crossings of theM5 axis are evident and even the
modes that do not cross are not far away from the axis,
compared with the large gap that appears forM5,0.8. Note
that M5;0.8 corresponds to the usual critical mass for Wil-

son fermions where chiral symmetry is restored at this gauge
coupling (b56.0). As we will see, this picture leads to a
relatively large value ofmres for the Wilson gauge action,
though we emphasize that the chiral symmetry breaking is
still very small compared to standard Wilson fermions at this
gauge coupling. In Fig. 3 the ratior [U] (t) defined in Eq.~13!
is plotted for the same configurations as in Fig. 2. The panels
in Fig. 2 and Fig. 3 are in one to one correspondence. In the
figures, r [U] (t) is quite dependent ont, with large fluctua-
tions occurring over a small range oft. Since we can see
multiple crossings in the spectral flow, which implies un-
damped modes in the fifth dimension, and multiple spikes of
r [U] (t) it is natural to investigate whether these are different
manifestations of the same phenomena.

In Fig. 4~a! we presentr̄ [U] as a function of configuration
number. It is clear thatr̄ [U] fluctuates widely, indicating that
there are configurations with larger chiral symmetry breaking
and others with relatively small breaking. The number of
configurations with enhanced chiral symmetry breaking is
significant (;50%), consistent with the known result that
the transfer matrix has an appreciable number of near unit
eigenvalues@30#. In addition, Fig. 3 suggests a close corre-
lation between configurations showing these spikes and those
with crossings in the spectral flow nearM551.8.

In order to further examine the nature of chiral symmetry
breaking on a given configuration we take a closer look at
the ratior [U] (t) defined in Eq.~13!. In Fig. 3 and Fig. 5~a!
we present this ratio for typical Wilson gauge action configu-

FIG. 2. Spectral flows of the Hermitian Wilson Dirac operator
g5DW for four typical gauge configurations generated with the Wil-
son gauge action atb56.0. There are many crossings in the neigh-
borhood ofM551.8 which induce explicit chiral symmetry break-
ing for domain wall fermions. The size of the would-be gap in the
region of the five-dimensional fermion massM5'1.8 is also rela-
tively small compared to the obvious gap above the critical Wilson
massM5'0.8. Both effects enhance mixing of the light domain
wall fermion modes and hence the value of themres.

AOKI et al. PHYSICAL REVIEW D 69, 074504 ~2004!
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In Fig. 5 we present the ratior [U] (t) defined in Eq.~13!
for a typical configuration of each action. In all cases it is
evident that the dominant contribution to chiral symmetry
breaking comes from very localized objects, and thus as we
argued before, it is not very surprising that localO(a2)
modifications of the gauge action can have a very significant

effect on explicit residual chiral symmetry breaking.
It is important to recognize that the above mechanism for

explicit chiral symmetry breaking is related to topology-
changing configurations~see Ref.@36# and references therein
for a more complete discussion!. The connection is made
through the index theorem: the domain wall fermion operator
in the limit Ls→` has an index@4,40# equal to the number
of right-handed minus the number of left-handed zero
modes, which corresponds to the topological charge of the
background gauge field configuration—a quantity which be-
comes precise in the continuum limit. This integer depends
on the value ofM5 used and is given by the net number of
crossings in the spectral flow of the Wilson Dirac operator as
the Wilson mass varies between a value above the critical
Wilson mass and2M5. While this index is well defined
only in the limit Ls→`, our simulations show that the near-
zero eigenvectors of the finite-Ls operator obey the index
theorem to a high degree of accuracy@5,41#. In particular, for
an Iwasakia21'2 GeV ensemble, when compared to the
topological charge computed using the smoothing method
described in Refs.@32,33#, the index agrees very well. In
those cases where the topological charge is not close to an
integer, we also find a crossing in the spectral flow, a spike in
r [U] (t), and a complex structure of eigenvectors that is not
expected from simple chiral symmetry arguments@41#. If M5
sits exactly on a crossing, then the index is not defined, even
the limit Ls→`. A crossing in the spectral flow that occurs
away from the critical Wilson mass corresponds to a configu-
ration with indistinct topology. Put differently, if the particu-
lar gauge field in question is in the midst of changing its
topology, which must happen if the update algorithm is er-
godic and updates the configuration smoothly, then such a
gauge field must give rise to a crossing. It is also sensible
that such a tunneling from one topological sector to another
proceeds through local changes in the gauge field which have
a characteristic size of one to two lattice spacings. In the
continuum limit, if the density of these dislocations is zero,
then all crossings happen at the critical mass and correspond
to physical topological charge. Thus the index as computed
from the spectrum of the domain wall operator Dirac opera-
tor is well defined in this case.

Consequently, when the Iwasaki action or the DBW2 ac-
tion is used, the question arises whether the topology
changes efficiently. We have measured the topological charge
using the smoothing method described in Refs.@32,33,55#
We used 20 APE smearing steps with smearing coefficient
0.45 followed by the extended loop definition of the topo-
logical charge density used in Refs.@32,33#. Our data are
presented in Fig. 14. The configurations shown in this figure
are separated by 1000 sweeps of Cabibo-Marinari pseudo-
heatbath with a Kennedy–Pendleton accept/reject step@56#.
We can see that there is a significant slow down in the topo-
logical charge fluctuations for the DBW2 action. Both the
Symanzik and the Iwasaki action also show a mild reduction
in the frequency of change of the topological charge. Al-
though the problem seems severe for the DBW2 action, we
can tackle it with brute force. For that reason we have pro-
duced a library of DBW2 lattices fora21 1.3 GeV and 2
GeV to be used for several domain wall fermion projects.

FIG. 12. The same as Fig. 2, but for the Iwasaki gauge action at
b52.6. The number of crossings neighborhood ofM551.8 is sig-
nificantly smaller and the gap clearly larger than in the Wilson case.

FIG. 13. The same as Fig. 2, but for the DBW2 gauge action at
b51.04. There are no crossings neighborhood ofM551.8 and the
gap is quite large, roughly comparable to the gap at the correspond-
ing mass above the critical Wilson mass. Note that this is also true
for the region beyond the next critical Wilson mass,M5'2.3,
where the four flavor Wilson fermion doublers become light.

DOMAIN WALL FERMIONS WITH IMPROVED GAUGE ACTIONS PHYSICAL REVIEW D69, 074504 ~2004!

074504-9

Wilson Iwasaki
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Suppression of low modes: quenched case

“residual mass” on a typical Wilson, Symanzik, Iwasaki, and
DBW2 gauge configuration (left). mres (right)

rations, again ata21'2 GeV. As we can see the dominant
part of chiral symmetry breaking comes from localized re-
gions in time. In particular for the configuration of Fig. 5~a!,
the Hermitian Wilson Dirac operator has two small eigenval-

ues whose eigenvectors are localized around the peaks of
r [U] (t). In addition, we have computed the topological
charge density using 20 APE smearings with smearing coef-
ficient 0.45, as described in Refs.@32,33#. A classically
O(a4) improved@34,35# topological charge density on APE
smeared lattices produced results almost identical with the
ones computed using the method of@32,33#. In order to ex-
amine if localized peaks of the topological charge density
correlate with the chiral symmetry breaking, we have com-
puted the correlation functionC(rW) of the topological charge
density with the lowest eigenvector of the Wilson Dirac op-
erator,

C~rW !5

(
xW

utr FF̃~xW !uuc0~xW1rW !u

(
xW

utr FF̃~xW !u(
yW

uc0~yW !u
. ~17!

In Fig. 6 we present an one-dimensional slice of this corre-
lation function for the configurations used in Fig. 2 and Fig.
3. The observed enhancement of the correlation aroundrW
50 is an indication that peaks of the topological charge den-
sity coincide with peaks of the eigenvector. Since we know
that the low eigenvectors generate chiral symmetry breaking
in the region of space-time that they have support, we can
infer that enhanced chiral symmetry breaking@i.e., a peak of
r [U] (t)] is also localized around these localized peaks of
topological charge density. Similar conclusions and more de-
tailed discussion can be found in Refs.@7,9,36#. This is a
crucial observation in understanding why improved gauge

FIG. 3. The ratio of Eq.~13! for four Wilson gauge configura-
tions. The bare quark mass is 0.02 andM551.8. The configurations
used are the same as those in Fig. 2 and the panels are in one to one
correspondence with the panels in Fig. 2.

FIG. 4. The quantityr̄ [U] defined in Eq.~14! vs configuration
number for~a! the Wilson gauge action atb56.0, ~b! the Symanzik
gauge action atb58.4, ~c! the Iwasaki gauge action atb52.6, ~d!
and the DBW2 gauge action atb51.04. All four cases correspond
to a21'2 GeV. The large spikes seen in the Wilson case are sig-
nificantly reduced for the Iwasaki action and almost eliminated for
the DBW2 action. These spikes corresponded to zero eigenvectors
of g5DW and are a significant source of chiral symmetry breaking
for domain wall fermions.

FIG. 5. The ratio of Eq.~13! for a single configuration of~a! the
Wilson gauge action atb56.0, ~b! the Symanzik gauge action at
b58.4, ~c! the Iwasaki gauge action atb52.6, ~d! and the DBW2
gauge action atb51.04. The spikes are quite localized in Euclid-
ean timet. Examination of the eigenvectors of the~domain wall
fermion or Wilson! Dirac operator confirms the zero modes are
localized in space as well.

DOMAIN WALL FERMIONS WITH IMPROVED GAUGE ACTIONS PHYSICAL REVIEW D69, 074504 ~2004!
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an order of magnitude smaller than that of the Wilson action.
Finally, the residual mass of the Symanzik action is roughly
a factor of 3 smaller than that of the Wilson action. In this
figure the solid lines represent fits to simple exponentials in
all cases except the Wilson action where a fit to two expo-
nentials is shown. For the Symanzik data a small deviation
from the simple exponential fit is observed atLs516 while
the Wilson action shows a very clear deviation. On the con-
trary, both the Iwasaki and DBW2 data can be fit well with a
simple exponential for the same range ofLs . For that reason
it is interesting to quote a value for the parameterq that

Shamir has computed perturbatively@13#. His one loop result
is that the light fermion wave functionx(s) decays exponen-
tially away from the wall, i.e,x(s);qs with q5 1

2 . The re-
sidual mass also behaves asmres;qLs. In the case of the
Wilson and possibly the Symanzik action, the fact that no
good fit to a single exponential is obtained may be a signal
that mres scales as a power law,@54# andq;1. Such behav-
ior is consistent with the spectral flows observed for the Wil-
son gauge action. For the Iwasaki and DBW2 actionsq
'0.7 andq'0.6, respectively, which is consistent with a
gap in the spectral flow atM551.7–1.8 that is well defined

FIG. 7. The ratio defined in Eq.~11! at a21'2 GeV. The fancy
squares correspond to the Wilson gauge action, the diamonds to
Symanzik, the squares to Iwasaki, and the octagons to DBW2. The
bare quark mass in all cases is 0.020 andLs516.

FIG. 8. The residual mass ata21'2 GeV as a function of the
bare quark mass. The octagons correspond to DBW2, the squares to
Iwasaki, and the diamonds to Symanzik. In each caseLs516.

FIG. 9. Dependence of the residual mass on the size of the fifth
dimension ata21'2 GeV. The octagons correspond to DBW2, the
squares~CP–PACS@6#! and diamond~RBC @5#! to Iwasaki, the
bursts to Symanzik, and the fancy squares to Wilson. All but the
Wilson action fit a simple exponential decay reasonably well. Note
the Iwasaki results use different gauge field ensembles at each value
of Ls . In the case of the Wilson action, the results are fit to a double
exponential function.

TABLE II. The residual massmres at a21'2 GeV for the ac-
tions tested. In the construction of this table, for the Symanzik
action we used 51 configurations, for the Iwasaki 45, and for the
DBW2 89.

mf Ls Symanzik Iwasaki DBW2

0.020 8 3.04(5)31023 7.54(5)31024

0.020 12 8.2(4)31024 9.92(20)31025

0.020 16 3.3(3)31024 1.4(4)31024 1.60(5)31025

0.040 8 2.90(4)31023 7.49(5)31024

0.040 12 7.4(3)31024 9.9(4)31025

0.040 16 2.73(24)31024 1.2(4)31024 1.56(3)31025

0.060 8 2.82(3)31023 7.50(8)31024

0.060 12 6.95(23)31024 1.00(6)31024

0.060 16 2.44(18)31024 1.15(27)31024 1.565(23)31025

DOMAIN WALL FERMIONS WITH IMPROVED GAUGE ACTIONS PHYSICAL REVIEW D69, 074504 ~2004!
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Low modes localized around “spikes” and small regions of large
topological charge density [Aoki, et al., RBC Collab. (2004)]
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Suppression of low modes: quenched case

Suppression is easy to understand. Modification of the gauge

action of order O(a2/ρ2) is positive for Iwasaki (and DBW2), so

small instantons are suppressed. [Garcia Perez, Gonzalez-Arroyo, Snippe, van

Baal (1994)].

Towards the continuum limit, tunneling of topological charge is

suppressed, and it is worse for improved actions

Have to be careful: χ symmetry is better, but should not sacrifice

correct average over topological sectors

In dynamical simulations, already use Iwasaki action, how can we

suppress further?
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Dislocation Suppressing Determinant Ratio

Add Wilson determinant(s) evaluated at −M5 explicity to (ratio-
nal) hybrid monte-carlo evolution:

det

(
/DW (−M5) + iεfγ5

) (
/DW (−M5) + iεfγ5

)†
(/DW (−M5) + iεbγ5) (/DW (−M5) + iεbγ5)†

= Π
λ2 + ε2f

λ2 + ε2b

det /DW (−M5) - [Vranas (2000,2006) (GapDWF)]

suppresses zeroes at −M5

det (/DW (−M5) + iεbγ5) [JLQCD (2006) (fixed topology/overlap)]

Moderates the large shift in β caused by numerator

det
(
/DW (−M5) + iεfγ5

)
[D. Renfrew, et al. (RBC) (2008)(unfix topology)]

allows for topology change
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RBC/UKQCD I-DSDR Ensembles

After significant parameter searching, chose

εf = 0.02

εb = 0.50

βI = 1.75

Ls = 32

and find a−1 ≈ 1.34 GeV and mres ≈ 0.0018

Compare to 1.73 GeV and 0.003 (2 times reduction in mres

physical units)
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RBC/UKQCD Gauge Ensembles (N. Christ’s colloquium on 7/28)

Monte Carlo Ensembles
• RBC/UKQCD gauge ensembles:

Volume 1/a L mπ Time 
units

mquarka Gauge 
Action

315 MeV 9000 0 005+0 0032
243 x 64 1.73 GeV 2.7 fm

315 MeV 9000 0.005+0.0032

Iwasaki
402 MeV 9000 0.01+0.0032
290 MeV 7000 0.004+0.0006

323 x 64 2.28 GeV 2.7 fm 350 MeV 8000 0.006+0.0006
410 MeV 6000 0.008+0.0006

323 64 1 4 G V 4 5 f
180 MeV 1000 0.001+0.0018 Iwasaki323 x 64 1.4 GeV 4.5 fm Iwasaki     

+ DSDR250 MeV 1800 0.004+0.0018

CERN TH Colloquium, July 28, 2010 (14)

Compare Iwasaki+DWF to I-DSDR+DWF

(latter is preliminary)
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Topological Charge

Continuum:

Q =
g2

16π2

∫
d4xGµν(x)G̃µν(x) and χQ = 〈Q2〉/V

Define lattice Q using the “5 loop Improved” operator, linear

combination of 5 loops: 1x1, 1x2, 1x3, 2x2, and 3x3.

[de Forcrand, et al. (1997)], after

APE smearing the links 60 times with αsmear = 0.45

13



Topological Charge

Iwasaki gauge action, a−1 = 1.73 (upper) and 2.28 (lower)
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Topological Charge

Integrated autocorrelations in Q (and plaq, ψ̄ψ, mPS)
a−1 = 2.28 GeV ensembles

Version 19 July 23rd 2010 8
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FIG. 1: Evolution of the average plaquette and the chiral condensate for theβ = 2.25,323 × 64 Ls = 16

ensembles. The chiral condensate is normalized such that〈ψ̄ψ〉 ∼ 1/m in the heavy quark limit.
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FIG. 2: The integrated autocorrelation time is shown for theaverage plaquette, chiral condensate〈ψ̄ψ〉,

pseudoscalar propagator at time separation 20 from a Gaussian source and point sink, all computed from

the 323,ml = 0.004 ensemble and global topological charge for all 323 ensembles. The chiral condensate

and plaquette are measured every two MD units and the averages within sequential blocks of 10 MD units

analyzed. Topological charge is measured every 4 MD units and the averages within sequential blocks of

20 MD units analyzed. All other quantities were measured every 20 MD units and no averaging performed.

Further discussion of topological charge is given in section VII.
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Topological Charge (histograms)Version 19 July 23rd 2010 97
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FIG. 52: Topological charge distributions. Top: 323, ml = 0.004− 0.008, left to right. Bottom: 243,

ml = 0.005 and 0.01.

control allows us to measure and use, as either inputs or predictions: pseudoscalar decay con-

stants, as well as their ratios; pseudoscalar masses; baryon masses; weak matrix elements and

static potential values, limited only by the statistics achievable for these observables. The ability

to predict many observables from the same simulations, provides evidence for the general reliabil-

ity of the underlying methods. The good properties of DWF also allow us to test scaling, over this

wide range of observables, at unphysical quark masses, since there are no flavor or chiral sym-

metry breaking effects to distort a test of scaling. We find scaling violations at the percent level,

which supports including scaling corrections in only the leading order terms in our light quark

expansions.

As we reduce the quark masses used in the simulations, it is frustrating that there remains a doubt

as to the best ansatz to use for the chiral extrapolation. We know of course that for sufficiently

light u andd masses the behaviour is given by SU(2) ChPT; what we don’t know is what ”suffi-

ciently light” means in practice. While in the range of quarkmasses accessible in our simulations,

corresponding to 290–420 MeV for unitary pions and 225-420 for partially quenched pions, our

16



Topological Charge

I-DSDR gauge action, ml = 0.0042 (upper) and 0.001 (lower)
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Topological Susceptibility

Lowest order [DiVecchia, Veneziano (1980); Leutwyler, Smilga (1992)]

χQ = Σ

(
1

mu
+

1

md

)−1

= Σ
mumd

mu +md
,

where (Σ)1/3 = (Bf2/2)1/3 = 251(4)(2) MeV.

At one-loop in chiral perturbation theory [Chiu and Mao (2009)],

χQ = Σ

(
1

mu
+

1

md

)−1

×(
1−

3

(4πf)2
m2
π log

m2
π

Λ2
+K6(mu +md) + 2(2K7 +K8)

mumd

mu +md

)
,

= Σ
ml

2

(
1−

3

(4πf)2
m2
ll log

m2
ll

Λ2
+ (2K6 + 2K7 +K8)ml

)
,

where Ki = 128 ΣLi/f
4
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Topological Susceptibility
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Topological Susceptibility
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Meson mass and decay constant fits (effective masses)

Simultaneously fit wall-point, wall-wall, PS and Axial Vector 2-pt
functions: 1 mass, 3 amplitudes → decay constants
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Pion Decay Constant Iwasaki+DWF
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Pion Decay Constant Iwasaki+DWF, I-DSDR+DWF
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Kaon Decay Constant Iwasaki+DWF
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Kaon Decay Constant Iwasaki+DWF, I-DSDR+DWF
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Nucleon Structure (〈x〉q, 〈x〉∆q, axial charge gA)

• Long standing “puzzles” (lack of agreement with exp.!)

• Heavy Baryon Chiral Perturbation Theory

〈x〉u−d = C

[
1−

3g2
A + 1

(4πFπ)2
m2
π ln

(
m2
π

Λ2

)]
+ e(Λ2)

m2
π

(4πFπ)2

〈x〉∆u−∆d = C̃

[
1−

2g2
A + 1

(4πFπ)2
m2
π ln

(
m2
π

Λ2

)]
+ ẽ(Λ2)

m2
π

(4πFπ)2
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[Aoki, et al. (RBC/UKQCD) (2009)]

Iwasaki+DWF

243, 1.73 GeV ensembles

2

mf 0.005 0.01 0.02 0.03

mπ[GeV][21] 0.3313(13) 0.4189(13) 0.5572(5) 0.6721(6)

(2.7 fm)3 1.083(50) 1.186(36) 1.173(36) 1.197(30)

(1.8 fm)3 N/A 1.066(72) 1.115(58) 1.149(32)

TABLE I: gA and mπ (V = (2.7 fm)3 only).

algorithm [19] with trajectories of unit length. The mea-
surements were performed at the unitary points only,
mf = mval = msea. We use the mass of the Ω− baryon to
determine the inverse of the lattice spacing 1/a = 1.73(3)
GeV [20, 21]. The residual quark mass due to the finite
size of the fifth dimension is 0.00315(2). The non-zero
lattice spacing error is small in our calculation because
the DWF action is automatically off-shell O(a) improved.

Four measurements are carried out for the 243 ensem-
bles on each configuration. The number of Monte Carlo
trajectories used for measurements is 6460, 3560, 2000,
and 2120 for mf = 0.005, 0.01, 0.02, 0.03, respectively,
with 10 trajectory separations for mf = 0.005, 0.01 and
20 for 0.02, 0.03. The measurements are blocked into
bins of 40 trajectories each to reduce auto-correlations.
On the 163 ensembles we use 3500 trajectories separated
by 10 trajectories at mf = 0.01, and 0.03, and by 5 at
0.02. The data are blocked with 20 trajectories per bin.

The axial charge is calculated from the ratio of the ma-
trix elements of the spatial component of the axial vector
current and the temporal component of the vector cur-
rent, V a

t = ψγt(τ
a/2)ψ, 〈n′|Aa

i |n〉/〈n′|V a
t |n〉 = gA. This

ratio gives the renormalized axial charge because Aµ and
Vµ share a common renormalization constant due to the
chiral symmetry of DWF. In our simulation the two con-
stants are consistent to less than 0.5% at the chiral limit.
In order to increase the overlap with the ground state,
the quark propagators are calculated with gauge invari-
ant Gaussian smearing [22] and we employ sufficient sep-
aration in Euclidean time, more than 1.37 fm, which
is the largest used so far in dynamical calculations of
gA [15, 23, 24], between the location of the nucleon source
and sink to minimize excited state contamination.

The plateaus of gA computed on volume V = (2.7 fm)3

are shown in Fig. 1. We checked that consistent results
are obtained by either fitting or averaging over appro-
priate time slices, t = 4–8, and also by fitting the data
symmetrized about t = 6. The larger volume data can
be symmetrized because the source and sink operators
are identical in the limit of large statistics. We note that
the length of our lightest mass run is already the longest
we know of for comparable simulation parameters. Re-
sults obtained from the fit using the unsymmetrized data,
presented in the figure with one standard deviation, are
employed in the analysis.

Figure 2 shows our result for gA. The results are also
presented in Table I. The (2.7 fm)3 data are almost inde-
pendent of the pion mass (squared) except for the lightest
point which is about 9% smaller than the others. A set
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FIG. 1: Plateaus of gA. V = (2.7 fm)3 and mf = 0.005, 0.01,
0.02, and 0.03, from top to bottom.
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FIG. 2: gA. Dashed and solid lines denote the fit results and
chiral extrapolation in infinite volume, respectively. The open
circle is extrapolated result at mπ = 135 MeV.

of the results obtained with a smaller volume, (1.8 fm)3

shows a similar downward behavior, albeit with relatively
larger statistical uncertainties. An earlier two flavor cal-
culation by RBC [14] with spatial volume (1.9 fm)3 and
1/a = 1.7 GeV showed a clear downward behavior, but
it sets in at heavier pion mass.

We suspect that this pion mass dependence driving
gA away from the experimental value is caused by the
finite volume of our calculation: in general such an ef-
fect is expected to grow as the quark mass gets lighter
at fixed volume, or the volume decreases for fixed quark
mass. More quantitatively, we observe in the figure that
the two flavor result with V = (1.9 fm)3 significantly de-
creases at m2

π ≈ 0.24 GeV2, while the 2+1 flavor results
with V = (2.7 fm)3 do not decrease even at m2

π ≈ 0.17
GeV2. Another trend of the FVE seen in Fig. 2 is that
all the 2+1 flavor, smaller volume data are systematically
lower than the larger volume data. Similar behavior was
observed in quenched DWF studies [8, 25]. However, for
pion masses close to our lightest point such a sizable shift
is not observed when V is larger than about (2.4 fm)3,
not only in the quenched case, but also the 2+1 flavor,
mixed action, calculation in [15], as shown in Fig. 2. On
the other hand, our results suggest that V = (2.7 fm)3

is not enough to avoid a significant FVE on gA when
mπ ≤ 0.33 GeV in dynamical fermion calculations.

In order to more directly compare the various results,
we plot gA against a dimensionless quantity, mπL, in the

[Yamazaki, et al. (RBC/UKQCD) (2008)]
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Nucleon effective masses tuning sources, I-DSDR ensembles
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only 26 and 49 configs but multiple sources
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Nucleon Mass
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Scaling

We set the scale using the Ω baryon mass since it has simple
chiral extrapolation [Toussaint and Davies (2005)] and can be obtained
with good precision

Version 19 July 23rd 2010 25
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FIG. 13: We illustrate themh dependence of the unitary pion (left panel) and kaon (right panel) masses on the

ml = 0.005 243 ensemble. The values are obtained by reweighting around thesimulated value (mh = 0.04).

mass using reweighting.
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FIG. 14: Fit to theΩ baryon mass with valence strange massmx = 0.04 on theml = 0.005,mh = 0.04 243

ensemble showing the quality of the fit with our box source (left panel). We also show the weak dependence

of theΩ baryon mass with fixed valence massmx = 0.04 on our simulatedmh inferred by the reweighting

procedure on theml = 0.005 243 ensemble (right panel).

The results for theΩ mass,mhhh, obtained directly at the simulated strange-quark mass (mh=0.04)

with valence strange-quark massesmy = 0.04 and 0.03 are presented in Table XII. In this table we

also present the results formhhh obtained after reweighting to the physical strange-quark mass. In

Table XIII we display the values of the Sommer scaler0, r1 and their ratio at both the simulated

and physical strange quark masses. These quantities were determined using Wilson loops formed

from products of temporal gauge links with Coulomb gauge-fixed closures in spatial directions,

with an exponential fit to the time-dependence of the Wilson loopW(r, t) from t = 3 to t = 7 for

each value of the separationr. The resulting potentialV(r) was then fit over the ranger = 2.45−8

243, ml = 0.005

“Box” source

(LB = 16)
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Scaling: Iwasaki+DWF 1
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FIG. 1: Ratios of dimensionless combinations of lattice quantitiesQ (listed in the figure) between the 323

and 243 lattices at the match point corresponding toml = 0.006,mh = 0.03 on the 323 lattice. A value of
unity indicates perfect scaling. The ratiosmll/mhhh andmlh/mhhh (and consequentlymll/mlh) are defined
to scale perfectly at these quark masses through our choice of scaling trajectory.

Figure 1 shows the ratios of several other dimensionless combinations of lattice quantities be-

tween the two lattices at the quark masses used in the matching procedure above. One can clearly

see the ratiosmll/mhhh andmlh/mhhh scale perfectly between the two lattices, as required by our

choice of scaling trajectory. The figure shows that we can expect only small scaling violations on

the order of 1–2% for the other quantities used in our global fits, and also that other dimension-

less combinations of lattice quantities would be equally suitable for the definition of the scaling

trajectory.

A wide range of ratios of physical observables scale very well

between 1.73 and 2.28 GeV ensembles when matched at mass

points where we have done simulations.
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Scaling: I-DSDR+DWF

Only one lattice spacing so far

But, can still match at unphysical point with Iwasaki ensembles

Using 2.28 GeV ensemble, decay constants fπ and fK scale within

3% and 2% respectively at the (0.001) match point

Both Iwasaki+DWF and I-DSDR+DWF appear to have modest

lattice artifacts

Another I-DSDR at smaller a needed to confirm
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Summary

• Simulation of new I-DSDR ensembles well underway

• residual χ SB small, even at large a (mres ≈ 2.5 MeV @ a = 0.14 fm)

• Unitary pion masses roughly 170 and 240 MeV

• Partially quenched physical pion/kaon masses (c.f., K → ππ(I = 2))

• Large volume >∼ 4.5 fm

• Scaling errors appear modest

• Physics prospects look bright (K → ππ, Nucleons, chiral pt, ...)

Calculations done on NY Blue and QCDOC supercomputers at Brookhaven
National Lab, Argonne National Lab Bluegene P, and the RICC cluster at
RIKEN. Thanks to BNL, RBRC, RIKEN, and USQCD for computational
resources.
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