BLM ASIC V3

Overview of the project



Outline

* BLM ASIC: motivation

* Development history

e Architecture 1: Adaptive Current-to-Frequency Converter
e Architecture 2: DeltaSigma Converter

* Planning and future developments
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BLM ASIC: motivation
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— ldea behind the project:

a) Remove the cables and the CFC card BLM ASIC develo
— pment

b) Place a readout chip next to the ionization chambers

c) Send digital data through optical link to the surface
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BLM ASIC: new setup under study
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Some ASIC specifications:
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Dynamic range: 1 pA—1 mA
Dual polarity input
Radiation hard: Total lonizing Dose 10 kGy in 20 years = no FPGA on board
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Development history @

. V2.1 back
Submission t CERN
Test of V1 V2 a Test of V2.1
/ / :
| \

|
Design V1 Submission Design V2 Test V2

N

Submission Development
of V1 V2.1 of V3 begins

Notice:

* Technology change in V3: 250 nm = 130 nm

* Project is “restarting”

* Possibility to explore other ideas for the architecture
* Fall-back to V2 architecture if problems arise
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Architecture 1: Current-to-Frequency Converter @

Basic concept

Cycle of operation (ideal) based on the charge-balance principle:

* Input current is integrated

* When the output voltage of the integrator reaches a predetermined threshold, the (clocked)
comparator “fires”

* The comparator output pulse activates a current source

* The current source is used to discharge the integrator to the initial value

* The frequency of the output pulses is related to the input current: f=I. /Q,



Adaptive CFC

Used in V1.0 and V2.X

Status Signal

* Dynamic range is divided in 4 sub-ranges

* For each range the logic selects the
appropriate values for

cLOCK » Feedback capacitor

» Discharge current

e Fully differential architecture guarantees good
noise rejection

* Reinjection of charge when disconnecting a
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the input current
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Wavetorm example - CFC
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Ref: G. Venturini et al, A 120 dB dynamic-range radiation-tolerant charge-to-digital converter for radiation monitoring, Microelectronics Journal, vol. 44, Issue
12, 2013 https://doi.org/10.1016/j.mejo.2013.08.020

29/06/2017

F. Zappon

10

10

10

-7

Measurement sigma [A]

i


https://doi.org/10.1016/j.mejo.2013.08.020

Architecture 2: Delta-Sigma Converter @

* Input current is integrated

Value of the integrator is compared to threshold

(out is 0/1) at each rising edge of the clock

DIGITAL * According to out, the 1-bit DAC subtract a certain

amount of charge from the input

* Qver time, the “average” of the output follows the
input

 The output bitstream is “decimated” by a digital
filter, implemented in the FPGA to get the value of
the input

QUANTIZER
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Very important concept for DS: oversampling!

29/06/2017 F. Zappon 10



Implementation: Multi Bit Delta-Sigma Converter @
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Waveform example — 15t order DeltaSigma <)
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Simulation results — Numerical simulations @
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Architectures comparison

e Bit pattern: similar — but DeltaSigma has higher frequency

* In both cases (CFC with multiple threshold or Multi-bit DeltaSigma) we need to send out of chip additional
bits to have the information about the charge subtracted

* CFCrequires a Digital State Machine, while DeltaSigma is “self-adjusting”
* Both architectures require radiation hard techniques, but DeltaSigma is less prone to digital problems (SEU)

* There is a bit pattern for DeltaSigma with zero input current (no need to inject a current to trigger the
frontend?)

e Charge subtraction in the CFC happens only when the signal is over threshold at the rising edge of the clock
while it is “continuous” in the DS.



Planning @

Target: submit chip to foundry in 1 year, i.e.: April 2018

_April | May | June | July | Aug. | Sept. | Oct | Nov. | Dec. | Jan. | Feb. | march | April

System level Transistor level design and Layout and simulations Signoff
studies simulations

A bit optimistic, but currently on track!

Bonus: implement a discrete-component version of the DeltaSigma architecture.
Cons: might create a delay

Pro: will give insights on the “real world” problems that the final circuit might encounter and we might be able to
plan in advance for those issues (plus: proof of principle, which is always good).
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CFC: design values

Range Feed. C Ref. Thr. Volt.
(pC) charge

0 1*10°° 256*10° 0.32 0.04 0.125
1 160*10° 4.1*10°® 2.56 0.64 0.25
2 2.56*10°% 65.5*10° 20.5 10.24 0.5

3 41*10° 1*103 164 163.84 1
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