Instrumentation for HiRadMat Experiments S.Burger BE-BI-PM BI Day - Best Western/Chavannes de Bogis (CH) 29th June 2017 #### Thanks to the colleagues: M.Bergamaschi (BE-BI), Aymeric Bouvard (EN-EA), E.Bravin (BE-BI), V.Clerc (EN-EA), A.Fabich (EN-EA), A.Goldblatt (BE-BI), A.Guerrerro (BE-BI), JJ.Gras (BE-BI), L.Jensen (BE-BI), K.Kessi (BE-BI), S.Mazzoni (BE-BI), C.Rinaldi (BE-BI), F.Roncarolo (BE-BI), A.Sounas (BE-BI), T.Lefevre (BE-BI), G.Trad (BE-BI), etc... & OP-SPS team !! ### Content - What is HiRadMat (HRM)? - **HRM Layout** - Combined instrumentation: BTV/BPKG - BPKG principle - BTV description - Performance - Ongoing development of a new BTV for HRM - Conclusion ### What is HiRadMat (HRM)? The High Radiation to Materials facility - hereafter HiRadMat - was designed for testing accelerator components, in particular those of the LHC and its injectors, with the impact of high-intensity pulsed beams "HiRadMat is **not** an irradiation facility where large doses on equipment can be accumulated. It is rather **a test area** designed to perform single experiments to evaluate the effect of high-intensity pulsed beams on materials or accelerator component assemblies in a controlled environment." S.Burger BE-BI-PM | HiRadMat beam specs | | | | | | | | |----------------------|--|--|--|--|--|--|--| | 440 GeV | | | | | | | | | up to 3.4 MJ | | | | | | | | | 3E9 to 1.7E11 p | | | | | | | | | 1 to 288 | | | | | | | | | 4.9E13 p | | | | | | | | | 11.24 cm | | | | | | | | | 25, 50, 75 or 150 ns | | | | | | | | | 7.2 μs | | | | | | | | | 18 s | | | | | | | | | 0.1 to 1.5mm (σ) | | | | | | | | | | | | | | | | | https://espace.cern.ch/hiradmat-sps/Wiki%20Pages/Home.aspx ### **HiRadMat Layout** S.Burger BE-BI-PM ## Combined instrumentation: BTV/BPKG: BPM principle BPM strip lines description (BPKG) 4 insulated strip lines sensitive to charged particles passage → Beam position H & V giving by: Pos H = $$Kx$$. $\frac{P1-P3}{P1+P3}$ + Xoffset Pos V = $$Ky \cdot \frac{P2 - P4}{P2 + P4}$$ + **y**offset ### Combined instrumentation: BTV/BPKG: BTV description ### **Insertion device** Holding an in-vacuum radiator ### Radiator Can be scintillating (Al₂O₃, ZrO₂ etc...) or reflecting material (C, beam steering ### Camera Can be standard CCD or special Rad hard (CMOS, CID, Vidicon tube) ### **Optical density filters** Can be added in front of the camera to increase the dynamics of the system ### **Combined instrumentation: BTV/BPKG: Design** - BPKG gives a permanent non invasive beam position measurement for each extraction to be correlated with the HiRadMat experiment. - BTV is used to define BPKG offsets (+ first tests for profile measurement) Strips of the BPKG and BTV screen at the back Al2O3:CrO2, SiC and Al2O3 (target) screens ## BTV/BPKG performance (2) BPKG reading improvement - Strong perturbations coming after the first 11 bunches - Seen on all BPMs down to the BPM408 in TJ7 - Perturbations compatible with backscattered shower affecting the electronic → Confirmed by time of flight (275ns → 82.5m!) - Relocation of BPM electronic in less exposed area during EYETS 15-16 - → Noise from radiation effects still occurs using high Z materials (further improvements are under investigation) - → Resolution given between 50 100 um ### **BTV/BPKG** performance (2) #### → Use of scintillating screens: - to delay the acquisition on the decay time of the scintillation above a few E12p/mm2 → non linearity - for low intensity beam above 1E13p/mm2 → damage - → Use of tR screens is limited as acquisition must be synchronized with beam (backscattering particles gives high background on camera!) - → Can not be used above 12 bunches (not made for anyway) - → Works fine for BPKG offset setup up Single bunch (1E11p) Al2O3 screen 24 bunches (2.4E12p) Al2O3 screen T 100% Delay 280ms 12 bunches (1.2E12p) Al2O3 screen T 0.1% Delay 60ms 12 bunches (1.2E12p) SiC screen T 0.001% ## **BTV/BPKG** performance (2) Results with the BTV/BPKG motivated the request to have reliable profile measurements of all beam extractions for OP & HRM users!! S.Burger BE-BI-PM Need for **screen** and **optical line** studies... ### Ongoing development of a new BTV for HRM (1) #### **Study of the screen performance*** as an experiment in HRM shows: - → Unexpected light emission (Cherenkov) that perturbs the measurements - Larger beam size - non linearity - screen reflectivity dependency Silver coated Si OTR screen without (left) and with (right) blocking foil in place. The change of intensity as well as beam size is clearly visible. Camera ### * SCINTILLATION AND OTR SCREEN CHARACTERIZATION WITH A 440 GEV/C PROTON BEAM IN AIR AT THE CERN HIRADMAT FACILITY ## Ongoing development of a new BTV for HRM (2) - → Screen in vacuum (primary vacuum <7mbar for 440GeV particles) - → Resisting to the max beam power (density) → polished amorphous SiC | New HRM BTV screen setup | | | | | | | | | | |--------------------------|------------------|---------------|-------------------|---|--|--|--|--|--| | Position | Material | Size
[mm2] | Thickness
[mm] | Fonction | | | | | | | 1 | Al2O3 | 10x20 | 1 | Calibration referenceMeasure low int. < 1E12p / mm2 | | | | | | | 2 | Al2O3:CrO2 | 10x20 | 0.5 | - Measure int. < 1E13p / mm2 | | | | | | | 3 | Ti | 10x20 | 0.1 | - Measure int. < 1E14p / mm2 | | | | | | | 4 | SiC
(amorphe) | 10x20 | 0.5 | - Measure high int. > 1E14p / mm2 | | | | | | ## Ongoing development of a new BTV for HRM (3) Location for camera #### → Optical line To move away the camera from the irradiated zone (TT61) → Optical line up to TT61, behind shielding **New BTV** ## Ongoing development of a new BTV for HRM (4) ### **Optical line setup** - A single lens (Focal length 1m). - Magnification of ~0.2 Reference image for calibration | Resolution [um/px] | | | | | | | |--------------------|----|--|--|--|--|--| | Horizontal | 72 | | | | | | | Vertical | 79 | | | | | | ### Ongoing development of a new BTV for HRM (5) Screen: Alumina 1mm Filter NO Notice | Profess Profes Single bunch (~1E11p) FP2_0.5mm Screen: SiC 0.5mm Filter OD4 **288bunch (~3.2E13p)** FP2 0.25mm **12bunch (~1.2E12p)** FP2_0.5mm **72bunch (~7.2E12p)** FP2_0.5mm Screen: SiC 0.5mm **216bunch (~2.4E13p)** FP2 0.25mm | Light
Emission
type | Screen | Bunch number (x1E11p) | | | | | | | |---------------------------|--------------------|-----------------------|-----|-----|----|-----|-------------------|-----| | | type | Optics FP2_0.5mm | | | | | Optics FP2_0.25mm | | | | | 1 | 12 | 36 | 72 | 144 | 216 | 288 | | Scintillation | Al2O3
(1mm) | NF | × | × | × | × | × | × | | | Chromox
(0.5mm) | 3 | 4 | × | × | × | × | × | | OTR | Ti (100um) | NF | 0.3 | 0.7 | 1 | 1.3 | × | × | | | SiC
(0.5mm) | 0.3 | 1.3 | 2 | 2 | 3 | 3 | 4 | Screen to use VS beam type (intensity + optics) ### Ongoing development of a new BTV for HRM (6) Doubt on the beam sigma measured Always ~30% larger than the model (!?) Measurements until Tuesday June 13th 18H27 \rightarrow give tails From Tuesday June 13th 18H43 \rightarrow give satellites If tails and satellites are not beam but 'reflections' or forward OTR from entrance vacuum window (expected negligible from Zemax simulations): - → work ongoing to define the source (mask, color filters, etc...) - → Some post processing to derive the real beam size (optics used 0.25 & 0.3) **Satellites** Error on beam size could be >11% ### Conclusion #### Beam position measurement – BTV/BPKG - → 3 has been produced and 6 experiments already used it from summer 2015 - → Offset calibration using BTV as close as possible works fine up to 12 bunches beam - → BPKG performs over the all intensity range of the extracted beam within specifications - → Investigations ongoing to get rid off the remaining noise due to backscattering effect - → This <u>BTV/BPKG</u> is not suitable for profile measurement (in air device, camera submitted to radiation, screen limitations, etc...) #### Beam profile measurement - BTV So far the new BTV can be used to measure all the beam range of HiRadMat (from 1 to 288 bunches) solving the following issues: - → radiation issue (optical line) - → screen robustness (polished amorphous SiC) which permits to operationally measure both small & intense beam - → Still few issues to work on (remove tails / satellites to be understood) to derive the right beam size - → Upgrade - make this system operational (optimize filter settings and build a dedicated GUI?) - use of digital camera # Thanks !! S.Burger BE-BI-PM Different Scale From same initial intensity ## On Focus Off Focus Different spatial size: focused is more concentrated Different Scale from same initial intensity, Peak ratio between on focus/off focus ≈ 636 ### On Focus Off Focus Different size from same initial intensity, peak position on focus ≈ 0.007 mm, position on focus ≈ 0.10 mm