2HDM+a mono-h→ bb: mass scans with different m_H & sin(theta)

Lars Henkelmann, Oleg Brandt, On the behalf of the mono-h \rightarrow bb analysis group

17.05.2017

The Model and its Parameters

- 2HDM+a with pseudoscalar DM-mediators a, A
- https://arxiv.org/abs/1701.074
 27
- 14 parameters in total
 - 7 fixed by symmetry, EW-precision measurements, observed higgs properties,...
- 7 free parameters:
- 4 affect MET shape:
 - \circ m_a
 - \circ m_{A}
 - \circ m_{H}
 - > sin(θ)

- tan(β)
- m_{χ}
- y_{v}^{λ}

Reminder: previous grid proposal

simulate parton-level x-sec bin into 4 MET bins fold (bin-by-bin) with Acceptance x Efficiency multiply with SM h \rightarrow bb branching ratio divide (bin-by-bin) by observed upper limit on $\sigma(h(\rightarrow bb) + MET)$

sum over 4 MET bins

Range in	$\sigma_{{ m vis},h+{ m DM}}^{ m obs}$	$\sigma_{{ m vis},h+{ m DM}}^{ m exp}$	$\mathcal{A} \times \varepsilon$
$E_{\rm T}^{\rm miss}/{\rm GeV}$	[fb]	[fb]	%
[150, 200)	19.1	$18.3^{+7.2}_{-5.1}$	15
[200, 350)	13.1	$10.5^{+4.1}_{-2.9}$	35
[350, 500)	2.4	$1.7^{+0.7}_{-0.5}$	40
[500, ∞)	1.7	$1.8^{+0.7}_{-0.5}$	55

$m_{H} = m_{A} + 100 \text{ GeV vs. } m_{H} = m_{A}$

- less sensitive to m_H = m_A scenario (reduced cross-section)
- would mono-Z benefit much from $m_H = m_A$?
 - $\circ \Rightarrow$ if not, stick to $m_H = m_A + 100 \text{ GeV}$

sin(theta) = 0.35 vs sin(theta)=1/sqrt(2)

- large significance gain for high-m_A,low-m_a region
 - o low-MET, but high x-sec signal
- ⇒ sin(theta) .lhe-reweighting of interest here

Width of A \sim m_A/3. for m_A >= 1.5 TeV

- ⇒ cannot rely on Auto-Calc. Widths
- ⇒ did not generate higher m

sin(theta) = 0.35 vs sin(theta)=1/sqrt(2)

- large significance gain for high-m_A,low-m_a region
 low-MET, but high x-sec signal
- ⇒ sin(theta) .lhe-reweighting of interest here

Width of A \sim m_A/3. for m_A >= 1.5 TeV

- ⇒ cannot rely on Auto-Calc. Widths
- ⇒ did not generate higher m

Summary

- repeated m_a, m_A scans with different m_H, sin(theta)
 - $om_{H} = m_{A} \text{ (prev.: } m_{H} = m_{A} + 100 \text{ GeV)}$
 - decreased sensitivity
 - \circ sin(theta) = 0.707107 (prev.: sin(theta) = 0.35)
 - higher sensitivity in m_A >> m_a region
- Conclusions:
 - \circ keep m_H = m_A + 100 GeV
 - would mono-Z benefit from $m_{H} = m_{\Delta}$?
 - try to get sin(theta) reweighting to work

Backup

Backup: m_A signal degeneracy for sin(theta) = 1/sqrt(2)

- only minor signal shape changes from changing m_A (>> m_a) for sin(theta) = 1/sqrt(2)
- dominant effect is cross-section increase
- \rightarrow exclusion largely independent of m_{Δ} in this region

2HDM+a ma=200.0 mA=1000.0-1600.0 mH=1100.0-1700.0 sin(theta)=0.707107

2HOM+a ma=200.0 mA=1000.0 mH=1100.0 sin(theta)=0.707107

2HOM+a ma=200.0 mA=1000.0 mH=1300.0 sin(theta)=0.707107

2HOM+a ma=200.0 mA=1000.0 mH=1300.0 sin(theta)=0.707107

2HOM+a ma=200.0 mA=1000.0 mH=1700.0 sin(theta)=0.707107

2HOM+a ma=200.0 mA=1800.0 mH=1700.0 sin(theta)=0.707107

Backup: The Width of A

- with sin(theta) = 1/sqrt(2), the width of A is comparable to m_A/3 for m_A >> m_a
 - ⇒ NWA breaks down
 - cannot trust MG's width
 calculations for width > m/3

Backup: Signal shapes for different m_H

Backup: Parton-level x-sec for m_H=m_A

2HDM+a: parton level cross section, after a MET >= 150GeV Cut

