DT Group Meeting

Engineering Contributions to Atlas and Neutrino Platform

June 22, 2017

Andrea Catinaccio

Outline

- Two engineering projects:
 - Atlas ITk Pixel Upgrade
 - Neutrino Dune LBNF
- Involving a number of DT resources today and in the future
- Supported by WP agreements
- Many other activities in EO are summarised in annex

Atlas Pixel Upgrade

WP between the ATLAS and EP-DT: 2017-2021

https://edms5.cern.ch/document/1735463/1 updated on 16/5/17

Areas of collaboration for engineering activities (as well as M&O, Services)

- CERN groups will contribute at 10% of the ITK Core
- DT collaborates in the **Development and Construction of the Pixel**, plus common items and integration (EDMS 1569301)

Two phases:

- (1) Development towards TDR completion (2017 2018)
- (2) Detector construction phase (2019 LS3)

EP-DT

(1) R&D work towards TDR completion (2017 – 2018)

- 1. Development work:
 - Mechanical design of a Pixel Barrel inclined layout proposal
 - C-composite structures, advanced materials, thermo-mechanical solutions, and global structures.

Single cells and "triplets" have been manufactured and tested (TFM validation)

(1) R&D work towards TDR completion (2017 – 2018)

2. Construction of so-called "Pixel Demonstrator Programme".

- A full-length active stave thermo-mechanical and electrical validation at CERN
- DT with ADE: contribute and coordinate the collaboration work with several ATLAS institutes on the Pixel inclined solution

- **Two year programme** launched at the end of 2016
 - Engineering Prototypes (several)
 - Loading, integration, re-workability and survey
 - System test

(1) R&D work Resources: a wide range of skills

		Resources (FTE/y) 2017-2018	Name where applicable
	Engineers	0.4	D.Alvarez
		0.3	A.Catinaccio
		0.2	X.Pons
	Technicians	0.3	F.Perez
		0.5	J.Bendotti
-		0.5	M.Vergain
		0.5	N. Dixon
	Designers	0.7	J. Degrange
	Physicists	1	N.Pacifico
		4.4	

DT Resources Estimated 4.4 FTE (but > 15 p. involved)

Active members are also : F. Boyer (composites), PA (Valery A.), ass tech. (Jan Mladek), FTEC (Ruben Gomez) and a Tech Student (Kari L. Ness), co-funded by ATLAS and DT

Detector Technologies

EP-DT

(2) Detector construction phase (2019 – LS3)

Focus on : one third of the pixel outer barrels construction

module, staves, loading, integration, testing, common items integration Tooling, CO₂ cooling system, Chip designs.

DT allocates resources to contribute to the following tasks:

- Carbon fiber final **Staves** and **Support** structures construction
- Services integration
- Loading with modules and QA
- **System tests & integration** (mechanical integration of staves with support structures).

D Alvarez

Name where applicable

The composite lab is now prototyping
and producing final CFRP
components for most of CERN
Experiments

Autoclave 2.5m x 1 m

0.7	D.Alvarez			
0.4	A.Catinaccio			
0.3	X.Pons			
0.5	J. Degrange			
0.4	F.Perez	•		
0.5	J.Bendotti			
0.5	N.Dixon			
1	N.Pacifico	•		
4.3				
Estimate of additional resources needed:				
1.6	N.A.			
0.5	N.A.			
1	N.A.			
	0.7 0.4 0.3 0.5 0.4 0.5 0.5 1 4.3 eeded: 1.6 0.5 1	0.7 D.Alvarez 0.4 A.Catinaccio 0.3 X.Pons 0.5 J. Degrange 0.4 F.Perez 0.5 J.Bendotti 0.5 N.Dixon 1 N.Pacifico 4.3		

Resources (FTE/y)

2019 – LS3

De

Ph

Es Te Ph

EP-DT Detector Technologies

- Additional manpower needed
- Key role of DT composite lab
- Assembly space in 154 from demonstrator programme on.

Neutrino LBNF: Overview

- LBNF: Long Baseline Neutrino Facility
 - Far detector LAr TPC at SURF
 - Near detector at Fermilab

DUNE (Deep Underground Neutrino Experiment)

(http://www.dunescience.org)

- 1500m underground
- Four LAr Cryostats (17kT LAr each)

Some unusual constraints

- Severe constraints imposed by shaft size and crane capacity
 - Shaft dimensions (cage): 3.77 x 1.42 x 2.13 m (LxWxH)
 - Crane capacity: expected max 9.5 ton.

Re-design of the Cryostat Warm Structure

• Since early 2015, 4 design revisions, 3 WP's, 2 Reviews, next Final Design Review 22.08 with DOE

Very busy people & next Deliverables

Activity FTE/year	2017	2018	2019	2020	2021
5.3, EP-DT-EO staff	1.35	1.0			
5.3, EP-DT-EO fellow	1.0	1.0			
5.4, EP-DI staff	0.2	0.2	0.2	0.2	0.2
total	2.55	2.2	0.2	0.2	0.2

- Four design assessments of load-carrying structure
- Analysis Models Analytical & Numerical (>150 models)
- Code Interpretation (EUROCODE 3 & ASME BPVC) (3000 pages)
- 3D CAD, Assembly (23 models)
- Reports (>3300 pages)

Next EP-DT-EO deliverables

- CATIA 3D models and installation sequence (Ch. Bault)
- Final design and structural analysis, (J. Batista Lopes , D. Alvarez , L. D'Angelo)
- Definition of test components (ie full size connections)
 L. D'Angelo, plus structural calculations above).
- Design and coordination (A. Catinaccio)

EP-DT

Detector Technologies

Thank You

List of agreed work packages

Available at: EP-DT EDMS:

- WP between the ATLAS Experiment and EP-DT for the period 2017-2021 https://edms5.cern.ch/document/1735463/1 updated on 16/5/17
- Workpage agreement Engineering support for the LBNF 10kT outer structure -23-02-2015. Towards conceptual design review mid-June 2015 https://edms5.cern.ch/document/1505004/1 - Version 1
- Further work after June 2015 review, described within the framework of a WP between the NP and EP-DT : Version2 https://edms.cern.ch/document/1579843/1
- WP's between the CERN Neutrino Platform and EP-DT 1735471 v.1: a link to WP's as the LBNF cryostat engineering EP-WP-05 - Version3 and 4

EP-DT

Activity FTE/year	2017	2018	2019	2020	2021
5.3, EP-DT-EO staff	1.35	1.0			
5.3, EP-DT-EO fellow	1.0	1.0			
5.4, EP-DI staff	0.2	0.2	0.2	0.2	0.2
total	2.55	2.2	0.2	0.2	0.2

EP-DT-EO deliverables:

- CATIA 3D models and installation sequence (Ch. Bault 40% FTE in EP-DT-EO for 2017, 2018)
- Final design and structural analysis, (J. Batista Lopes at 50% and D. Alvarez at 25%, Luca)
- **Definition of test components (ie full size connections)** (100% L. D'Angelo, for 2017 and 2018 also contributing to the structural calculations of the paragraph above).
- **Design and coordination** of these activities in 2017-2018: (20% of A. Catinaccio, and 5% in 2019 to 2021 if proven necessary).

ATLAS New Small Wheel Micromegas Upgrade (LS2)

Motivation

- The only major detector upgrade in ATLAS for LS2
- DT activities within the project
 - Design one out of four module types (LM2) and construct module 0
 - Develop tooling and assembly procedures for the series production. Train the assembly teams
 - Consult and assist the collaboration on the industrial production of the PCBs (micromegas)
 - Participate in the development of the resistive coating which is crucial for the success of the project

EP-DT-EO LBNF Contribution Summary

CERN

EO other Projects

Other examples of running projects/ activities (non exhaustive list):

CMS :

- Upgrade TOB, TIB
- Upgrade High granularity Si Calorimeter
- CMS HGCal wafer probe station setup

Alice

- ITS upgrade
- ITS, TPC, installation LS2
- TC integration

LHCb

- upgrade (SciFi tracker), UT detector
- TC integration, infrastructure design and calculations
- NA62 (post installation support)
 - GTK integration and micro-cooling
 - Straw detector

LCD:

- CLICdp Vertex, Integration studies HCAL, ILC collaboration
- Outer tracker support structure prototype
- Testbeam telescope

COMPOSITE LAB

Support to Gas Detector R&D lab Support to the Cooling Project (EP-DT-FS) Support to Micro-fabrication Support Catia / Smarteam

Integration: CMS OUTER TRACKER PHASE 2 UPGRADE

Alice ITS staves production, Beam pipe production, TC integration

Junction Box for LHCb detectors: UT & Velo

Operation Lucasz Plant modelling