Data Acquisition, Monitoring, Control and Safety Systems for Experiments

June 22, 2017

Outline

- Field of expertise
- Controlling and measuring magnets
- Safety systems for experiments and facilities
- Detector & detector infrastructure control
- Data Acquisition for experiments

Our Field of Expertise

- Design, develop, build, deploy, maintain and operate control and safety systems for experiments
 - => hardware and software
 - Electro-mechanical knowhow
 - Control technologies
 - CERN software frameworks (JCOP, UNICOS)
- Make precise magnetic field measurements
 - Hardware, DAQ, analysis software
- Design, develop, build, deploy, maintain and operate data acquisition systems for experiments
 - => hardware and software
 - Networking and computer architectures knowhow
 - High performance computing and I/O, control
 - CERN software frameworks (JCOP, UNICOS) and tools (monitoring, FTS, databases, ...)

Magnets Control Project

٠

Piquet service for MCP and DSS since 2006

Magnetic Field Measurements

- Measuring benches
 - General purpose benches:
 - Cylindrical, Cartesian pneumatic, large volume
 - 3D scanner for small magnets
 - Dedicated benches: LHCb, MICE, AMS
- 3D B-sensor system
 - calibrated in three dimensions
 - assembly line for "mass" production
 - Max field 2.5 Tesla
 - Precision ± 0.2 mT in Bx,By,Bz, 0.05 mm in x,y,z
 - DAQ system with software
- Field calculation
 - FEM programs, most recent: COMPASS SM2 scaling to unmeasured current value.
- Coil winding
 - Warm and superconducting coils, e.g. LHCb, AEGIS, LHC BE-BI-BL
- EP-DT Magnet park
 - Distribution and maintenance of EP-DT magnet park
- Service area
 - Test area and equipment for experiments

Semi automatic assembly line for B-sensors

EP-DT Detector Technologies

Safety Systems for Experiments and Facilities

Expertise gained during development of MSS systems has been transferred to other safety systems

- NA62, ProtoDUNE, GIF++, Neutrino Platform...
- Systems using cRIO or PLC technologies

Detectors (Infrastructure) Control

- Expertise in precise movement control
 - Test benches, roman pots, LHCb VELO, ATLAS beam pipe alignment
- Vacuum/cooling control systems
 - Roman pots, CMS, ...
- Temperature maps
 - ALICE, ProtoDUNE, ATLAS
- Slow control for the 2 ProtoDUNE experiments
 - Temperature, pressure, purity, HV, LV, ...

Data Acquisition for Experiments

- Support to and upgrade of existing systems (NA62)
- Design, development, deployment (NP04)
- R&D (ATLAS, SHIP)

Supported LHC Control Systems

Detector Technologies

Neutrino Platform Support

Summary and Outlook

- Years long experience in control and measurements of experimental magnets
 - Support to LHC experiments
 - Unique know-how in magnetic measurements of large aperture magnets
- In depth knowledge of detector control and data acquisition
 - Aim at pulling these two domains closer together
- Ability and flexibility to support both very large installations as well as smaller experiments
 - Reuse of technologies
- Time for our own R&D allows to
 - Deploy sound solutions rapidly and cost effectively
 - Develop in-house expertise for offering good support

