

MICROFABRICATION

Jacopo BRONUZZI PhD, EPFL

Timothée FREI PhD, EPFL & CSEM

Clémentine LIPP MSc, EPFL

Alessandro MAPELLI

Ranit MONGA TRAINEE. EPFL

MICROFABRICATION OF ON-DETECTOR COOLING SYSTEMS

Fabrication of structures with features below the mm. Same techniques as used for microelectronics and silicon detectors.

Novel high performance compact systems based on microfluidics.

WHY MICROFLUIDIC ON-DETECTOR COOLING SYSTEMS ?

D.B. Tuckerman and R.F.W. Pease, IEEE Elec. Dev. Letters, Vol. 2, 5, 1981

- No CTE mismatch
- Low material budget
- Active/distributed cooling
- Radiation resistance
- Great integration potential
- Thermal Figure of Merit

 $\mathsf{TFM} = \frac{(\Delta \mathsf{T} \text{ fluid-sensor})}{(\mathsf{power density})}$

EP-DT Detector Technologies

How do we manufacture silicon microchannels ?

Collaborative effort between experiments (ALICE, LHCb and NA62), support groups (DT and ESE), and external partners (CSEM and EPFL).

PHOTOLITHOGRAPHY LAYOUT

8" WAFER PROCESSED AT CEA-LETI

CROSS-SECTION OF THE COOLING PLATES WITH EMBEDDED MICROCHANNELS

& WAFER BONDING

WAFER THINNING

SILICON ETCHING

NA62 GTK - PIONEERING MICROCHANNELS !

- 2009 concept of micro-cooling for the GTK presented to NA62: <u>https://indico.cern.ch/event/58370/</u>
- 2014 First GTK in the experiment
- 2016 Data taking with 3 GTK detectors
- 2017 Assembly of 6 GTK modules for 2018

The beam and detector of the NA62 experiment at CERN, Journal of Instrumentation, Volume 12, May 2017, https://goo.gl/P391U3

DT Group Meeting, 22 June 2017

LHCb velo upgrade – evaporative co₂ in microchannels

FP-DT

Detector Technologies

- Primary heat source due to the VeloPix chips (~1 W/cm2)
- Sensors must be kept at -20°C
- Evaporative CO₂ circulates in microchannels routed directly under the VeloPix chips.
- Total power consumption > 2kW.
- ▶ 52 modules in secondary vacuum separated by primary beam vacuum by a 0.25 mm thick Al foil.
- ▶ 12 cooling plates delivered by CEA-Leti. 14 more will be delivered soon.
- Void-less soldering of connector to cooling plates procedure under development.

SILICON THERMAL MOCKUPS

Test complex silicon microchannel layouts in the new CO₂ test setup at CERN.

See Paolo PETAGNA's talk.

INTEGRATING MICROCHANNELS ON PIXEL DETECTORS

- Tests ongoing with blank wafers
- Embed microchannels on the backside of CMOS wafers, tests later this year.

INTERCONNECTIVITY – DAISY CHAINING MICROFLUIDICS

- NA62 and LHCb cooling plates
 - limited surfaces
 - access from the side
- For larger systems we need in-plane interconnections.

SUMMARY & OUTLOOK

- Inter-disciplinary activity to develop, fabricate and operate microsystems and microfluidic devices, involving several other sections.
- > DT provides the perfect environment for such a development.
- First application in a running experiment: NA62 GTK.
- Followed up by LHCb Velo Upgrade: fabrication of the cooling plates and development of the soldering procedure for the connector ongoing as part of the baseline development.
- Study of buried channels ongoing. Plans to test this on CMOS wafers later in the year.

