
The Gas Systems project

June 22, 2017

on behalf of the gas team: Albin, Andrea, Beatrice, Frederic, Kacper, Louis-Philippe, Patrick, Roberto Students: Giulio, Mara, Vincent, Tomoo FS (Cooling & Gas) workshop: Abdel, Cedric, Hervé, Jonathan, Vincent

Detector Technologies

* Also involved in other not gas systems projects

Outlook

- The team
- Mandate & expertise
- LHC gas systems
- Non-LHC gas systems
- Project oriented R&D for sustainable operation in the future

Mandate & Expertise

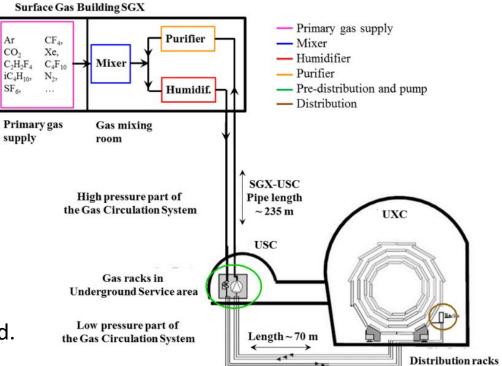
Mandate:

- 1) Maintenance, operation and consolidation of the gas systems for the LHC experiments
- 2) Design and construction of gas systems for small experiments at CERN
- 3) Support to users for test beam and debugging (i.e. MFCs calibration, gas analysis, ...).
- 4) Access to 'standardized gas modules'

Expertise:

- 1) Long experience in developing gas systems for particle detectors: from design to operation and maintenance
- 2) Fully automated systems. Software developed in collaboration with BE-ICS.
- 3) Gas analysis (quality and mixture composition) for good long term detector operation

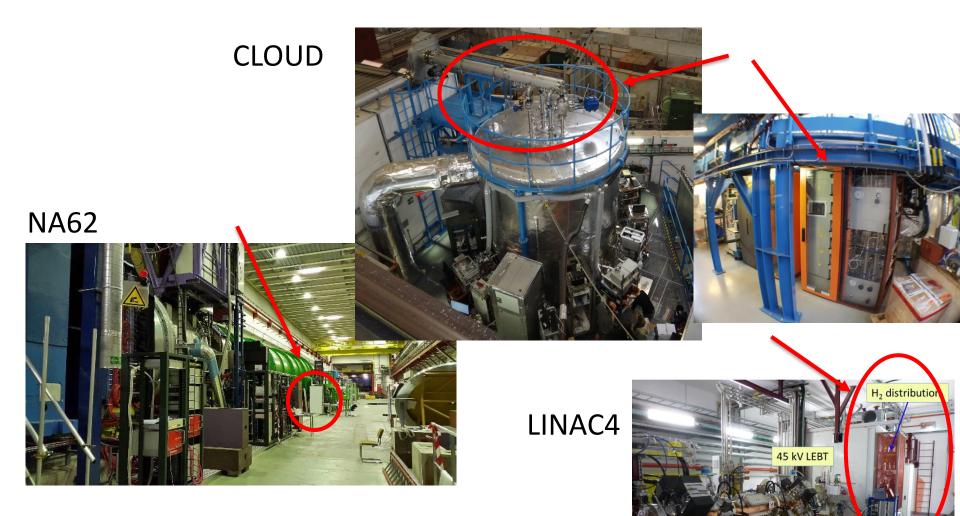
- A gas system is:
 - Mixing the different gas components in the appropriate proportion
 - Distributing the mixture to the individual chambers
- Gas systems are made of several configurable functional modules (building blocks):
 - It simplifies maintenance, operation, training of personnel, ...



LHC Gas Systems

Gas systems extend from the surface building to the service balcony on the experiment following: a route few hundred meters long.

- Gas system distributed in three levels:
 - Surface (SG)
 - Gas Service room (USC)
 - Experimental cavern (UXC)

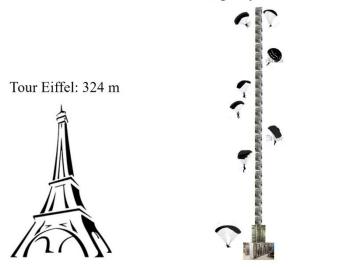

Large detector volume (from < m³ to several 100 m³) Use of expensive gas components: (i.e. ALICE-TRD 500 kCHF Xenon for 30 m³)

 \rightarrow

Complex operation with gas recirculation: operational costs and gas emissions reduced.

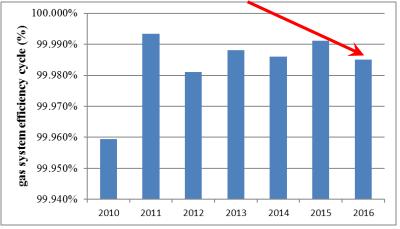
Non-LHC gas systems

3 MeV RFQ


LHC Gas Systems M&O

It is core of our mandate:

30 gas systems, i.e.:


- double the height of the Eiffel tower
- > 1000 interventions recorded in our elog
- > 99.98% availability

EP-DT Detector Technologies CERN GAS Team eLog						
Logbook	Entries	Last submission				
Maintenance and Operation						
GASSYSOperation&Maintenance Gas System ELOG Operation (v1.0)	638	19/05/2017, 16:09 by albin wasem				
GAS_PIQUET Gas System ELOG Operation (v1.0)	227	20/05/2017, 01:51 by Patrick CARRIÉ				
Non-LHC Experiments Gas System ELOG Operation (v1.0)	90	18/05/2017, 19:15 by Patrick CARRIÉ				
Material_Borrowed Gas System ELOG Operation (v1.0)	8	18/05/2017, 16:41 by Roberto Guida				
New Projects						
CLOUD Gas System ELOG Operation (v1.0)	20	08/11/2016, 15:14 by albin wasem				
CLOUD Water Gas System ELOG Operation (v1.0)	3	17/01/2017, 14:23 by Louis-Philippe De Menezes				
SClosedLoop Gas System ELOG Operation (v1.0)	12	12/10/2016, 13:43 by Roberto Guida				
ATL-STGC Gas System ELOG Operation (v1.0)	4	12/08/2016, 15:44 by Frederic Merlet				
Mixer-IR Gas System ELOG Operation (v1.0)	2	16/09/2016, 22:02 by ALVARO DIEZ GONZALEZ PARDO				
Analysis Boxes a Gas System ELOG Operation (v1.0)	1	01/08/2016, 13:38 by Louis-Philippe De Menezes				
Portable GC Gas System ELOG Operation (v1.0)	3	07/12/2016, 16:12 by ANDREA D'AURIA				
CMS_GEM A Gas System ELOG Operation (v1.0)	12	26/10/2016, 10:24 by Roberto Guida				
MFC a Gas System ELOG Operation (v1.0)	62	24/02/2017, 10:35 by vdarras				
CF4 Recovery A CMS CSC CF4 Recovery eLog	23	05/04/2017, 15:41 by Giulio Candreva				
FlowCell A Gas System ELOG Operation (v1.0)	3	10/05/2017, 17:07 by Roberto Guida				
Gas System Status						
ATLAS A ATLAS Gas System Status	1	06/01/2017, 14:52 by Frederic Merlet				
CMS 🚔 CMS Gas System Status	1	16/01/2017, 08:41 by ANDREA D'AURIA				
ALICE	1	06/01/2017, 15:23 by Louis-Philippe De Menezes				
LHCD 🖨 LHCb Gas System Status	1	15/02/2017, 12:21 by Patrick CARRI&D: 15				
TOTEM 🔒 TOTEM Gas System Status	1	06/01/2017, 16:41 by Giulio Candreva				

LHC gas system racks: > 500 m

Gas Systems efficiency On average less than 1h/year/system of downtime

LHC Gas Systems M&O

Few more numbers:

- Construction started in 2000
- Operational since 2005-2006
- 30 gas systems
- 300 Universal Euroracks

Mass-flow controllers 150 MFCs

Per gas system:

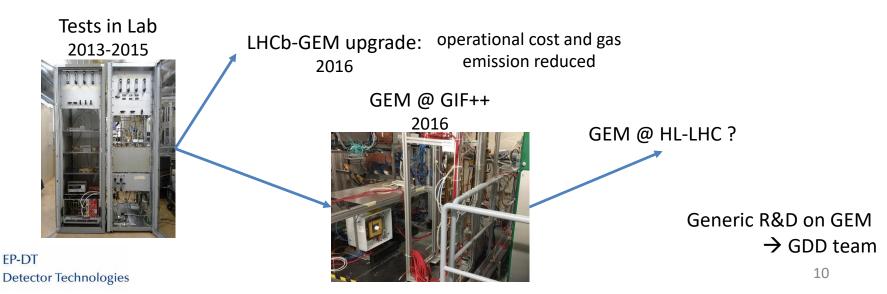
- ~ 2-3 km pipes
- > 1000 connectors and 500 welds
- ~ 40 Pressure sensors
- ~ 10 Regulation valves
- < 0.1 l/h leak rate</p>

EP-DT Detector Technologies

Controls module 60 PLCs

Flow meters 4000 in distribution modules

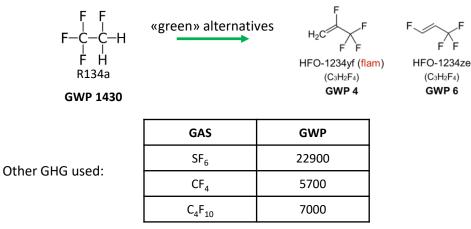
Gas analysis ~ 70 gas analyzers and 6 gas chromatographs



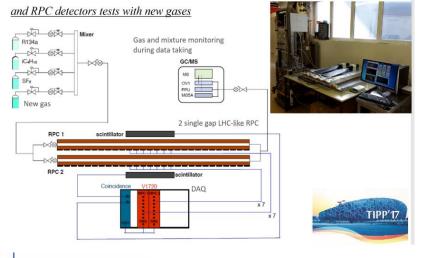
LHC Gas Systems and new challenges

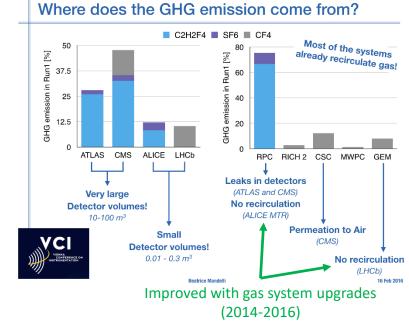
- Present detectors will be actors in discovery challenges for many other years
 - Increased level of attention (stability and quality)
 - New requirements for operation (higher flow, more stable pressure, ...)
 - Development of new systems (cost and environmental issues)
- Ongoing project oriented R&D activities fundamental to keep current standard on new requirements. Three research lines.
- Support from the experiments is needed to go at full speed and deliver on-time

1) Detector operation and mixture purification with new recirculation systems at HL-LHC


Example: Gas recirculation system for GEM

2) Gas systems for new environmental friendly gases


Greenhouse gases are responsible for the greenhouse effect.


GHG gases are used in particle detection.

GWP = Global warming potential: relative measure of how much heat a GHG traps in the atmosphere

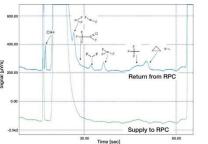
Gas system components (P regulators, MFCs, Gas analysers GC/MS)

Several gas system components tested successfully More than 50 different mixtures testes. Most relevant results summarized below.

Mixture	Chem.	GWPmix	HV	Strem
Mixture	Struct.		(V)	(%)
R32 -iC4H10 4.5 - SF6 0.6	С	1027	7500	14.0
R134a -iC4H10 4.5 - SF6 0.3		1491	9581	1.5
R152a -iC4H10 4.5 - SF6 0.6	C-C	430	10000	10.0
R245fa -iC4H10 4.5 - SF6 0.6 - He 50	C-C-C	1263	6666	20.0
HFO1234 -iC4H10 5 - SF6 0.3 - Ar 42.5	C=C-C	134	8900	70.0
HFO1234 -iC4H10 4.5 - SF6 0.6 - He 50	C=C-C	373	9020	22.0
HFO1234 - R134a 37.45 - iC4H10 4.5 - SF6 0.6 - He 20	C=C-C	889	10450	1.8
HFO1234 - R134a 40.1 - iC4H10 4.5 - SF6 0.6 - He 20	C=C-C	726	10500	8.0
HFO1234 - R134a 50 - iC4H10 4.5 - He 20	C=C-C	434	10800	50.0

EP-DT

3) Gas systems project oriented R&D


Very close to gas systems operation. Main topics are:

Upgrade and consolidation of current systems

ALICE-MTR, LHCb-GEM, Several modules,

. Gas analysis: Day to day detector and gas system operation

GC-MS, O₂, H₂O, IR, ...

New or upgrade of gas recuperation systems

New developments → portable gas recirculation systems (for detector R&D, GIF, ...)

6 modules built

EP-DT

Expensive or GHG gas recuperation (CMS-CSC CF₄ plant)

Conclusions

• The LHC Gas Systems M&O is the core activity of the team:

Maintenance, operation, consolidation bring a multitude of small projects difficults to handle

- The challenge is well represented by three numbers:
 - double the height of the Eiffel tower
 - > 1000 interventions recorded in our elog
 - > 99.98% availability
- Gas system project oriented R&D program crucial for a good development of present and new systems
 - keep on to fulfil new requirements (including gas recuperation systems to reduce GHG emissions)
 - Development of "portable units" for detectors R&D
 - Gas systems must be ready for using new environmental friendly gases
- A huge thank to everybody in the gas team (staff, students and FSU in the FS workshop) for all the work and the commitment to the project!

