Back-up

Back-up: *alignment speres*

- High index glass balls used as retro-reflectors in the MATHILDE alignment system developed for HIE-ISOLDE
- In the frame of the PACMAN (Particle Accelerator Components' Metrology & Alignment to the Nanometre scale) project
 - Same concept explored for FSI (Frequency Scanning Interferometry). Main goal: replace the standard corner cube shape retro-reflectors with balls
 - Coating to improve the intensity of reflected laser beam

Coated Glass Ball – Distance wmeasurement test ith FSI

@Francois Morel

Coated Glass Balls -> 0.5 inch target

Back-up: LHCb RICH upgrade

reflectance scan on final LHCb RICH1 flat glass substate

Back-up: *Microbuses*

REALISATION MICRO BUSES

BUT: Fabriquer des micro buses avec un diamètre de 10 à 30 µm pour les expériences suivantes:

- LEAR
- AD
- ISR
- FAIR à Darmstadt
- PANDA à WW Munster
- Italie
- USA Fermilab

Plus fin au monde 40 microns

17

12

Back-up: *Microbuses*

Back-up:

CERI

Microbuses

Back-up: *Microbuses*

EP-DT Detector Technologies

CERN

T. Schneider TFG 22/06/2017

Philadelphia, 12/10/2017 - 6th International Conference on Micro Pattern Gaseous Detectors, MPG Dol 2007 TESSAROTTO EP-DT Detector Technologies

The COMPASS THGEM design

Philadelphia, 12/10/2017 - 6th International Conference on Micro Pattern Gaseous Detectors, MPGD 2017

Detector Technologies

Csl QE measurement

19 CsI evaporations performed in 2015 - 2016 on 15 pieces: 13 THGEMs, 1 dummy THGEM, and 1 reference piece (best from previous coatings)

$I_{Normalized} = \frac{I_{CsI} - I_{CsI_{Noise}}}{I_{Ref} - I_{Ref_{Noise}}}$

11 coated THGEMs available, 8 used + 3 spares

THGEM number	evaporatio	on date at 6	0 degrees	at 25 degrees	
Thick GEM 319		1/18/2016		2.36	2.44
Thick GEM 307		1/25/2016		2.65	2.47
Thick GEM 407		2/2/2016		2.14	2.47
Thick GEM 418		2/8/2016		2.79	2.98
Thick GEM 410		2/15/2016		2.86	3.14
Thick GEM 429		2/22/2016		2.75	2.74
Thick GEM 334		2/29/2016		2.77	3.00
Thick GEM 421 re-coating		3/10/2016		2.61	2.83
Reference piece	7/4/2	2016	3.98	3.76	

 $\frac{\pi}{2\sqrt{3}}\left(\frac{d}{p}\right)$

QE measurements indicate an average THGEM QE = 0.73 x Ref. piece QE, in agreement with expectations (THGEM optical transparency = 0.76)

Thanks to Thomas Schnider and Miranda Van Stenis

Philadelphia, 12/10/2017 - 6th International Conference on Micro Pattern Gaseous Detectors, MPG D 20107 TESSAROTTO

Detector Technologies

Production THGEM @ ELTOS:

Assembly of Hybrid THGEM +MM:

- Secondary beams of hadrons (p±, π±, K±) and leptons (e±, μ±) of very low energies (0.5 to 12 GeV) and intensities (10³ particles/spill maximum).
- Individual particle detection required: profile, intensity, spectrometry, ToF.
- Large area detectors: 20 cm x 20 cm.
- First prototype ready for September 2017. Beam tests foreseen in the East Area in October/November. A total of 26 detectors ready for mid-2018.

EHN1 Extension - H2 VLE Beam Schematic Layout

The layout for H4 is slightly different but involves an equal number of detectors.

Proposed instrumentation:

- scintillating fibres read out by silicon photomultipliers (XBPF)
- Scintillating fibres read out by photomultiplier tubes (XSCINT)

XSCINT

New technical fellow (Jonathan Franchi), under supervision of Thomas Schneider (EP-DT), has done an investigation on glues and thin foils to assemble the fibres

EJ-500 epoxy resin with $25\mu m$ kapton foil is the best combination

From a small prototype

21/04/2017

Jonathan Franchi CERN EP-DT-EF

16

To the real size detector

Assembly process

The XSCINT module is giving some problems

