EP Irradiation Facilities

IRRAD Proton Facility

Gamma Irradiation Facility

June 22, 2017

East Area Irradiation Facility

Operation 2017:

- 17 days beam setup
- ~200 days for users operation with protons started on May 10th
 - special weeks: 4× for cryogenic setup in IRRAD, 3× for heavy-materials,
 10x water cooled equipment in CHARM, discussing "blown-up" beam period;

Proton Facility

- 1w for CERN Shielding Benchmark Facility (CSBF).
- Heavy lons Run: 4w with Xe ions for SEE cross-section studies

EP-DT Detector Technologies

Facility Overview

- Testing components of the HEP experiments
- Beam of 24 GeV/c and size of 12×12 mm²
- > Fluence of 1×10^{16} p/cm² in 14 days
- > Low temperature irradiation (-25 $^{\circ}$ C)

Statistics

FE Electronics (w. or wt. detectors), 36%

Registered Experiments (web)	52	49 executed (94%)	
Number of users / user teams	28	~70% LHC experiments	
Number of samples / irradiated objects	416	246 "SET" numbers	
Samples size (MIN/MAX)	2mm × 2mm	250cm × 13cm × 4cm	
MAX target proton fluence per experiment	1×10 ^{L7} p/cm ² (5×5mm ² FWHM)	~27MGy in silicon	
Delivered proton (typical MIN/MAX)	~2×10 ¹¹ p/cm ² (1 spill)	~4.2×10 ¹⁶ p/cm ² (5×5mm ² FWHM) ~1.6×10 ¹⁶ p/cm ² (20×20mm ² FWHM)	
Irradiation time (typical MIN/MAX)	400 ms	~60 days ~76 days	

- Radiation damage studies \succ
- Test of prototypes before installation \succ
- Test and calibration of components >

- ~280 samples registered
 - 18 user teams
 - Max. target $\Phi = 1 \times 10^{17} \text{ p/cm}^2$
- several other experiments being discussed
- registered users: LHCb-UT, CMS-HCAL, CMS-Pixel, ATLAS-ITK, ATLAS-Pixel, ATLAS-LARG, ATLAS-Strip, RD50, FCC WP11, BE/BI, TE/MSC and EN/EL

- EP-DT Detector Technologies

Gamma Irradiation Facility @ EHN1

- Joint facility, operated by EN-EA and EP-DT
- Combines a high energy muon beam +14 TBq ¹³⁷Cs gamma source
- Designed for testing real size detectors, of up to several m², as well as a broad range of smaller prototype detectors and electronic / optical components.
- 100 m² irradiation bunker with 2 independent irradiation zones, separated attenuation systems
- All year operation from Cs-Irradiator
- High energy Muon beam at H4 beam line 9 weeks dedicated shared beam in 2017
- **Central Control System, recording all relevant** parameters (Irradiator, environment, filters, gas, beam, access conditions..) and provides **interlocks** (e.g. for wrong gas mixtures)
- Wide range of available gases (+ custom gases) in bunker & service zone

Facility Goal

Despite their difference in detector design, all four LHC experiment rely on muon triggering and muon detection for reaching their physics goals.

With increased high radiation environment of the HL-LHC, the muon detectors will face new challenges in distinguishing muons from background an dealing with radiation induced ageing effects => Dedicated test facility needed !

Strong Cs Source

Sets of absorption filters

2 independently adjustable radiation fields, with background conditions similar to expected detector environment

Detector Technologies

User Set-Up for 2017

Wide range of setups, from real size LHC gas detectors (up to several m²) to small optical or electrical components

26 Set-ups requesting beam or long term irradiation

Description of each set-up available at https://gif-irrad.web.cern.ch/gif-irrad/UserList.html

 6 Gas Detector technologies ♥ DT, MDT ♥ CSC ♥ RPC, iRPC, GRPC ♥ MM ♥ GEM ♥ STGC 	ATL-MDT detector ATL-Phase-II system test ATL-MM ATL-NSW-MM-mod0 ATL-NSW-MM_resistive ATL-NSW-MM-prod ATL-NSW-STGC-mod0 ATL-NSW-STGC-prod ATL-NSW-STGC-Prod ATL-NSW-STGC-ELX ATL-RPC ATL-BIS78-mod0	CMS-CSC1 CMS-CSC2 CMS-CSC3 CMS-DT-MB1 CMS-DT-bycells CMS-GEM1 CMS-GEM2 CMS-RPC1 CMS-RPC1 CMS-RPC2 CMS-RPC3	 OCHER BE-BI-BL BLM EP-DT1, EP-DT2 RE21_CBM (FAIR) LHCb - M1R3 LHCb - M1R3 Wide range of electronic- or optical components for short time (several weeks) irradiation
CERN EP-DT Detector Technologies	ATLAS C CMS C C CMS C C CMS C C CMS C C C C CMS C C C C C C C C C C C C C C C C C C C	ical setup during be	ອ

2017 Highlights

GIF

COMPLETED

- Intense maintenance period completed in March
- Second cosmic trigger chamber installed
- Improved temperature & humidity control inside bunker + temperature stabilisation for gas system
- Improved central control system (GCS), new web page
- Upstream XTDV installed (now independent to zone 134)
- Irradiation field markings

New gas detection system installed & commissioned

- Increased rack space in service area (+ 3 racks)
- Several new setups installed

PLANNED

- Material Access Door (EN, 30kCHF) scheduled for August
- Stable environmental conditions for gas racks (barrack)
- Improved irradiation field usage
- New exhaust line for gas system
- Additional hardware interlocks for detector systems

Irradiator improvements (UPS, new interlock key, easier maintenance)

CONCEPT

Enlarged irradiation bunker (discussion with EN-EA Started)

Radiation Facilities Upgrade

Name	Facility Characteristics	Main Purpose	FCC-driven targets (10 years operation)	Possible Upgrade
IRRAD	Particle: p+ Momentum: 24 GeV/c Flux: ~1-3×10 ¹⁰ p/cm²/s TID: ~7-10 kGy/h	Study of IEL and NIEL effects on performance of detectors, calorimeters and FE electronics for HEP experiments.	<i>TID:</i> 90 MGy, Φ : 2.8×10 ¹⁷ p/cm ² . → one test takes ~1 year. <i>Issue</i> : low flux.	Increase flux to reach target fluence faster.
CHARM	Particle: mixed-field Energy: n ^o , HEH >100MeV Flux: 10 ⁷ -10 ¹¹ HEH/cm ² /h TID: 0.01-100 Gy/h	Test of COTS electronics in an LHC-like environment for SEE evaluation such as failure cross sections and system sensitivity to radiation.	<i>TID:</i> 100 Gy, $Φ: 7.9 \times 10^{10}$ p/cm ² . → low levels, but 4x more systems for a 100 km FCC. <i>Issue</i> : not enough space.	Larger irradiation bunker to test more racks in parallel.
GIF++	Particles: γ + μ beam Energies: 0.662 MeV, 100 GeV m TID:~1Gy/h at 1m.(14TBq Cs137) Flux: 10 ⁴ particles/spill (μ beam)	Evaluation of detection performance and aging of muon chamber detectors in ionizing dose environment.	<i>TID:</i> 10 kGy. → one test takes >1 years. Issue: both space and dose-rate.	Larger irradiation bunker to test bigger equipment + stronger gamma source.
CC60	Particles: γ (10TBq Co60) Energy: 1.17 MeV, 1.33 MeV TID:~1kGy/h at 5cm.	Validation and test of electronic components and systems to ionizing radiation.	<i>TID</i> : 10 MGy. → one test takes >1 year. <i>Issue</i> : both space and dose-rate.	Stronger source.

