Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

Fabrizio Scuri¹⁾
on behalf of the
ATLAS Tile Calorimeter System

1) Istituto Nazionale di Fisica Nucleare Sezione di Pisa, Italy

e-mail: fabrizio.scuri@pi.infn.it

Test beam activities supported by the Advanced European Infrastructures for Detectors at Accelerators

Introduction

Motivations for the TileCal LHC phase-II upgrade

- At High Luminosity LHC (HL-LHC, 2026), the istantaneous luminosity will increase by a factor 5-7 (~200 p-p collisions per bunch crossing)
 - ==> increased particle flux through TileCal (2 to 24 Gy for 4 ab⁻¹ integrated luminosity)
- Readout electronics is ageing due to operation time and to radiation.
- Current readout architecture is not compatible with the new fully digital TDAQ system of ATLAS and with the timing requirements for trigger and data flow.
- Detector components (steel absorbers, scintillating tiles, fibres and almost all the PMTs) will **not** be replaced, but detector optics robustness has to be assessed.

Strategy for the upgrade

- Adopt some general concepts for detector upgrades of the LHC experiments:
 - use electronics parts tolerant to the expected radiation level.
 - readout electronics architecture to sustain the higher trigger rate (> 1MHz) and larger event buffer (>10 μ s)
 - ===> move buffers and pipelines off detector and read out at 40 MHz (LHC crossings)
- Improve reliability through redundancy to limit the impact of component failures.
- Replace optics parts which may have intolerable response loss at HL-LHC, about 800 PMTs
 of 10,000 in TileCal, reading-out the most exposed detector cells (largest average anode current)

TileCal in the ATLAS experiment

Mechanics: "Drawer" and "Mini-Drawer" concepts

TileCal readout architecture

TileCal Electronics System Diagram at LHC

TileCal Electronics System Diagram at HL-LHC (Demonstrator)

Present TDAQ intefrace

New HV active dividers will be used in the PMT block Non-linearity response below 1% up to 100 μA anode current

Front-End boards

• 3 different options proposed, developed and compared in lab tests and at the test beam

- 1) **New "3-in-1" card** (evolution of the present FE board, U. Chicago):
- Rad hard discrete components;
- Shaped pulse and high precision slow integrator
 ==> accurate luminosity measures in Van der Meer energy scans
- 2) "QIE" (ANL project):
- ASIC chip
- gated integrator and ADC
- 3) "FATALIC" (Clermont-F.)
- ASIC chip
- Current conveyer and ADC

Down-selection process completed in 2017 fall, "3-in-1 option selected"

Main Board (v3)

Version for the "3-in-1" FE card:

- 4 sections, each served by a FPGA
- 3 PMTs served by 1 section with:
- 6 chs. of 40 Msps 12-bit ADCs (low and high gain)
- 3 chs. of 50 KHz 16-bit ADCs for the slow integrators.
- Distribute the slow control commands to the FE cards.
- Manage charge injection calibration and remote system configuration
- Physically divided into 2
 parts with independent
 powering from POL regulators
 receiving +10V from LVPS
 bricks in "Diode-Or"

Daughterboard (V4)

- Receives TTC signals and slow control commands from the back-end Pre-Processor (PPr) module
- Distributes signals and commands to the Main Board (MB) and to the HV board
- Collects/concentrates ADC data from the MB
- Transmits data over optical links to the PPr
 (40 Gbps required, 80 Gbps per board in redundancy)
- Divided in 2 sections which can be operated independently, each section serving up to 6 FE channels
- Communication with MB through a 400 pin FMC connector
- Interface with the PPr through redundant QSFP connectors
- System managed by 2 Kintex-7 FPGAs
- 2 GBTx chips used to manage the system clock and FPGA remote configuration

Latest DB version V5 design & prototyping:

- FPGAs: Kintex7 -> Kintex Ultrascale+
- Two QSFPs replaced with four 850 nm multimode SFPs
- First prototypes available

Pre-processor (PPr) and TDAQ interface (TDAQi)

- Design of the full-scale PPr is being finalized (8 SD (Tile modules))
- Each PPr consists of:
- One customized ATCA carrier
- Four Compact Processing Modules (CPM)
- One TDAQi RTM (Rear Transition Module)
- Optical transceivers with multimode fibres
- 1st prototype (1/8 of the full-scale) extensively tested at the past test beams superDray
- 2nd prototype to be integrated with a FELIX (Front-End Link eXchange)

CPM main functionalities:

- Communication with the front-end (FE) for control, configuration and monitoring.
- LHC clock recovery and distribution to the FE
- Remote configuration of the FE electronics FPGAs
- High speed data reception from the FE and storage in pipeline memories
- Data calibration and processing (cell energy calculation) in real time every bunch crossing.
- Extraction from pipelines data of triggered events to be sent to the FELIX through the TDAQi
- Transfer data to the Trigger FPGA in the TDAQi

TDAQi main functionalities:

- Synchronous reception of cell energy
- Calculation of trigger objects (trigger towers or group of cells of different eta/phy size)
- Making copies of the trigger objects
- Synchronous transmission of trigger objects data and copies to the different trigger systems
- Sending readout data of triggered events to the FELIX

High Voltage power supplies

Two options under evaluation, different location of the distribution and monitoring electronics

"Remote" option (baseline)

■ HV bulk power supplies <u>and regulators</u> installed in the Atlas service cavern (USA15)

- Requires 100 m long HV wires for each individual PMT.
- Advantages: easy maintenance, no radiation hardness issues

A 12 channel prototype used at the test beams

■ HV cables with higher density wire bundles from different companies under test → Challenge is fitting and routing large volume cables with big HV connectors

"Internal" option (back-up)

- HV bulk power supplies in the underground service cavern, but regulators on-detector
- Individual channel control through the DaughterBoard
- Advantage: reduced number of HV cables (only one HV cable per module (SD))
- Operational and used at the test beams

Low Voltage power supplies

A three stage power system based on the current LVPS design

Improvements:

- Better reliability, lower noise
- Improved radiation tolerance
- Lower number of connections
 - One DC level (+10V) and POL regulators for the voltages needed by the local circuits
- Redundant power distribution
 - 2 individual "bricks" per mini-drawer
 - Redundancy control with diode "OR" in the mainboard

Voltage adjust and controls through the new ATLAS slow control system (ELMB++ or ELMB2)

-- Each individual brick requires remote on/off control

8 bricks (1 SD) assembled in a box located in the Tile drawer

extension ("finger")

F. Scuri / Calor2018

Test beam campaigns

- Test beam campaigns very useful to test and to integrate the different components of the demonstrator.
- Five campaigns of 2 weeks between 2015 and 2017 with three detector modules equipped with different readout systems:
- 1 Long Barrel and 1 Extended Barrel modules with legacy readout electronics
- ½ Long Barrel module with the new "3-in-1" FE option for the upgrade (Demonstrator)
- ½ Long Barrel Module with the other FE ASIC options ("FATALIC" and "QIE")
- Results shown in next talk (A. Rodriguez Perez).
- Demonstrator readout with the ATLAS TDAQ SW allowing for:
 - Front-End configuration
 - Physics and calibration (Caesium source and laser) runs
- Two more test beams scheduled during 2018 (May and November) with the following program:
 - Integration of the real ATLAS FELIX in the TDAQ software
 - Test of the last Daughterboard version (V5)
 - Test of the full-size PPr prototype
 - Test of the "remote" HV option with cables with higher density wires
 - Test of the mechanics option (micro-drawers μD) for the extended barrel
 - --> increased modularity only for the mechanical structure (1 SD = 3 MD + 2 μ D)

Test beam set-up (2017)

H8 beam facility in the CERN North Area

Tested modules mounted on a movable platform

- The super-drawer (Demonstrator) of the long barrel LBC 65 equipped with the 3-in-1 FE upgrade option.
- The Demonstrator provides all the upgrade functionalities compared to previous electronics (Legacy Super-Drawer (SD)).
- The ASIC alternatives (FATALIC/QIE) mounted in the super-drawer LBA 65.
- The super-drawers M0 C and EBC 65 were equipped with the Legacy SD system.
- Multi-Anode PMTs (MA) on M0 A, for special tests of light collection.

Test beam 2018 readout architecture

Kept compatibility with the present (legacy)
 TDAQ architecture in the "Demonstrator"

 Added a full upgraded readout system to an Extended Barrel module

- Link bandwidths:
- From Mainboard to Daughterboard:560 Mbps for each channel and gain
- Daughterboard to PPr (including redundancy for each mini-drawer):
- Uplink (DB—>PPr) : 8 links @ 9,6 Gbps
- Downlink(PPr—>DB): 4 links @ 4,8 Gbps
- PPr to ROD (legacy readout) :1 link @ 640 Mbps
- PPr to FELIX: 1 link@ 4,8 Gbps

With DB_v5 the data links between PPr and DB will be reduced by a factor of 2 (4 uplinks, 2 downlinks)

PMT robustness studies and replacement for HL-LHC

- Full replacement of the readout PMTs of TileCal not foreseen.
- Time evolution of the response studied for the most exposed and special cells of the detector.
- Observed a down drift of the PMT response during p-p collision periods, with a partial recovery during shut-downs
- Made a two-exponential model for the PMT response loss as a function of the anode integrated charge.
- Only a small fraction of the PMTs (8% of 10,000) for cells in the inner layer A will loose more than 30%. They will be replaced with last and improved version of the same PMT type.

TileCal phase-II upgrade: medium term program

F. Scuri / Calor2018 16

Summary

- A wide R&D program for the new TileCal readout electronics for HL-LHC is progressing well
 - Prototypes of all elements of the full readout chain intensively tested
 - Continuous tuning of the new versions of each component prototype of the FE and BE electronics.
 - Full-size PPr and TDAQi (interface to the future ATLAS TDAQ) prototypes ready this summer
 - LVPS ready for pre-production
 - Evaluating 2 HV distribution architectures (HV "remote" option is the baseline)
 - Radiation hardness tests for all elements of the system on-going or ready to start
- New super-drawer mechanics design completed, prototypes available including the micro-drawer option for the Extended Barrel and the new drawer extraction system.
- Studies on PMT lifetime and robustness in progress, made projections to the HL-LHC era.
- In general, high reliability of the upgraded system will be achieved through redundancy, modularity, and robustness.
- Five test beam campaigns from 2015 to 2017 and two more in 2018.
- Steps of the TileCal upgrade roadmap to HL-LHC on the time schedule.

Back-up

TileCal cell geometry

Mechanics for the new module drawers

- New mechanics and extraction tools
 - Simplify the handling during maintenance
 - Allow access in reduced detector standard opening
- Each module hosts 4 mini-drawers:
 - 12 PMTs + 12 Front-End cards (3-in-1 cards)
 - 1 MainBoard + 1 DaughterBoard
 - 1 HV regulation board: Internal or Remote option Coeling part of the control of the coeling part of the
 - 1 adder base board + 3 adder cards (only for the *Demonstrator)
- 1 LVPS: low power distribution for readout electronics
- Mini Mini-Drawer proposal for Extended modules under study
 - Only 32 PMTs in Extended modules (10 PMTs in MD3 and MD4)
 - Proposal: 3 MD + 2 MMD using
 3 sets of electronics boards

New HV active dividers in the PMT block

"QIE" Asic based option for the FE cards

 The core is QIE 12 ASIC, some of COTS devices in advanced technology used for slow control and calibration purpose

→ LVDS/LVCMOS buffers, DACs, SAR ADCs, OPAMPS, and Mux

 The QIE splits the PMT output current in 4 ranges, each has a corresponding gated integrator and 7-bit ADC. Combining the 4 ranges, QIE presents 17-bit dynamic range with non-linear transfer function

F. Scuri / Calor2018

"FATALIC" Asic based option for the FE cards

The FATALIC ASIC design has a current conveyer with outputs with a gains ratio of 64:8:1, each followed by an RC shaper to handle the PMT signals

- Three 12-bit ADCs in parallel to digitize the outputs from current conveyer
- Combined dynamic range is 17-bits
- Auto-selection data readout with medium gain + (Low or High gain)
- ASIC built in 130 nm CMOS technology operates in 1.6V, consuming 205 mW

F. Scuri / Calor2018

Daughter board version 5 architecture

Pre-processor (PPr) prototypes

Prototypes (1/8 of the full-size PPr, 1 Super-Drawer)

- 1st prototype extensively tested at the past test beams
- 2nd prototype to be integrated with a FELIX emulator
- Two FPGAs:
 - Virtex 7 + 4 QSFPs for data readout (TTC/DCS distribution to the FE, interface to FELIX, energy and time reconstruction)
 - Kintex 7 + Avago MiniPOD TX for trigger (data to L0/L1Calo, pre-trigger algorithms)

Full-size Pre-Processor

ATCA carrier with 4 AMC positions

 Modular strategy to reduce the complexity of the PCB layout → saving costs

- Xilinx Zynq controller module
 - SODIMM form factor
 - Diagnostics, monitoring, remote programming
- GbE Ethernet switch module
 - SODIMM form factor
 - 16 GbE ports,1 per AMC, Zone 2, TDAQi
- CERN IPMC mezzanine card
 - DIMM form factor
 - AMC/Blade management, sensor reading

Compact Processor Modules

- Readout and operate 2 TileCal modules
- Single AMC form factor
- Xilinx Kintex UltraScale FPGA
- 8 Samtec firefly modules (up to 32 links)
- Artix FPGA for diagnostics, clock phase monitoring
- First prototypes expected for summer 2018

CPM diagram

TDAQi prototype

- Trigger and DAQ interface (TDAQi)
 - Receives calibrated cell energy from the PPr and interfaces with the trigger systems
 - Interfaces the PPr with the FELIX
- TDAQi prototype: <u>reduced version</u>
 - Kintex UltraScale FPGA
 - 2 SFPs, 2 Samtec Firefly, SMA connectors
 - 1 QSFP connected directly to zone 3 (signal integrity studies)
 - Rear Transition Module form factor
 - No major issues found
 - Voltages, dimensions, JTAG chain verified
 - More tests ongoing: Link qualification with Xilinx IBERT IP core

Top Bottom