Performance of the CMS Zero Degree Calorimeters in the 2016 pPb run

Olivér Surányi on behalf of CMS Collaboration

Eötvös Loránd University Wigner RCP Budapest, Hungary

21th May 2017 CALOR 2018, Eugene (OR)

The Forward Detectors of CMS experiment

1. Physics motivation

1. Centrality in hA and AA collisions

- Heavy ion (AA) collisions:
 - Impact parameter ~ Number of binary collisions (N_{coll})
 - Important in the measurement of nuclear modification factor:

$$R_{AA} = rac{\mathrm{d}N^{AA}/\mathrm{d}p_{\mathrm{T}}}{\langle N_{\mathrm{coll}}
angle \mathrm{d}N^{pp}/\mathrm{d}p_{\mathrm{T}}}$$

Typical centrality estimator: charged particle multiplicity
 Hadron-nucleus (hA) collisions:

- Relevant quantity is N_{coll}, but only loosely correlated with impact parameter and multiplicity
- Unbiased centrality estimator: zero degree energy

Hadron-nucleus collision

Hadron-nucleus collision

NN collisions \Rightarrow **grey nucleons** ($\beta \in [0.3, 0.7]$)

∜

3. Utraperipheral collisions

Interacting only via EM field ($\sim p\gamma$ and $\gamma\gamma$ collisions)

- Using ZDC as a veto:
 - Ensures intact nucleus/nuclei.
- **E.g.** Υ photoproduction \rightarrow probing gluon pdf of proton

4. Flow and reaction plane

- Hot, dense matter produced in heavy ion collisions
- ϕ -distribution of particles w.r.t. reaction plane expanded to Fourier modes (v_n).
- *v_n*: flow coefficients, signature of anisotropy and behaviour of hot, dense matter
- Important: reaction plane, but very hard to measure → can be estimated by considering spectator neutron spatial distribution

2. The CMS Zero Degree Calorimeter

Zero Degree Calorimeter

- Located in neutral particle absorber (TAN), ~ 140 m from IP5 – between the two beampipes.
- Measures forward neutral particles at |η| > 8.5
- Charged products are wiped out by magnets.

Segmentation of ZDC detector

Segmentation:

- EM: y-axis 5 channels
- HAD: longitudinally 4 channels
- RPD: 4 x 4 quartz array – 16 channels

Physics capabilities:

- Centrality in pA, AA
- Tagging UPC events
- Event plane (with RPD)

ZDC detector

Electromagnetic section (EM):

- 33 vertical tungsten plates
- 19 radiation lengths or one nuclear interaction length.
- 5 divisions in the x direction

(Not enough room for read-out of y-segmentation)

Hadron section (HAD):

- 24 tungsten plates
- 5.6 hadronic interaction length
- Plates are tilted by 45° → maximizes the light that a fiber can pick up.
- Divided into 4 segments in z direction

3. Calibration

ZDC signal definition

- Continuous readout with 25 ns timeslices.
- 100 ns bunch spacing \rightarrow out-of-time pileup in TS7 and TS-1.
- Maximum in time slice 3 (TS3).
- The definition of ZDC signal for a given *i* channel:

$$Q_i = Q_{i,\mathsf{TS3}} - rac{1}{2}(Q_{i,\mathsf{TS2}} + Q_{i,\mathsf{TS6}})$$

Low gain ZDC signal

■ When TS3 saturated, using *R* · TS4

Saturated signal:

$$Q_i^* = R \cdot \left[Q_{i,\text{TS4}} - \frac{1}{2} (Q_{i,\text{TS2}} + Q_{i,\text{TS6}}) \right]$$

R is calculated from not saturated events:

$$R = \left\langle \frac{Q_{i,\text{TS3}} - \frac{1}{2}(Q_{i,\text{TS2}} + Q_{i,\text{TS6}})}{Q_{i,\text{TS4}} - \frac{1}{2}(Q_{i,\text{TS2}} + Q_{i,\text{TS6}})} \right\rangle$$

Matching channel gains

Relative gain matching:

- Intercalibration
- Cross-calibration to 2010 data, using variables:
 - HAD2/HAD1
 - HAD3/HAD1
 - HAD4/HAD1
- Choosing w_i weights to match the maximum of distributions

Total ZDC signal:

$$Q_{\text{ZDC}} = \sum_{i} w_i Q_i,$$

where $i \in \{\text{EM1-5}, \text{HAD1-4}\}$

Calibration – neutron peaks

- Pb-going side
- Nearly monoenergetic neutrons due to large boost of Pb-ion
- 1, 2, 3 neutron peaks are clearly visible
- Fit with sum of Gaussians, with fixed mean and variance:

$$\mu_n = n\mu_0$$
$$\sigma_n^2 = n\sigma_0^2$$

1 neutron peak at 2.56 TeV (nominal value for $\sqrt{s_{NN}} = 8.16$ TeV)

4. Pileup correction

Pileup in ZDC runs

Larger shoulder for larger pileup values

Looking for $\langle \mu \rangle = 0$ case, expectation: shoulder disappears

Using Fourier deconvolution method

Deconvolution via Fourier transform

Assume that *n* number of pPb collisions in a bunch crossing is Poisson distributed:

$$p_n = rac{\mu^n}{n!} rac{\mathrm{e}^{-\mu}}{1 - \mathrm{e}^{-\mu}}$$

(only the n > 0 case is considered, $1 - e^{-\mu}$ appears in the denominator to ensure proper normalization)

 μ : ZDC-effective number of collisions.

Then the ZDC energy deposit can be described by X random variable:

$$X=\sum_{i=1}^n Y_i,$$

where Y_i is the random variable describing ZDC energy deposit for an event with single collision.

Deconvolution via Fourier transform

Aim: calculate the pdf of Y_i , g(x) when the pdf of X is known: f(x). Using total probability theorem:

$$f(x) = g(x) p_1 + (g * g)(x) p_2 + (g * g * g)(x) p_3 + \dots$$

Taking the Fourier transform of both sides $(f(x) \rightarrow F(\omega), g(x) \rightarrow G(\omega))$:

$$F(\omega) = \sum_{k=1}^{\infty} p_k G^k(\omega) = \frac{e^{-\mu}}{1 - e^{-\mu}} \sum_{k=1}^{\infty} \frac{(\mu G(\omega))^k}{k!} = \frac{e^{-\mu}}{1 - e^{-\mu}} \left(e^{\mu G(\omega)} - 1 \right)$$

After expressing $G(\omega)$ and doing inverse Fourier transform:

$$g(x) = \mathfrak{F}^{-1}\left[rac{1}{\mu}\log\left[1+(\mathrm{e}^{\mu}-1)F(\omega)
ight]
ight]$$

Pileup correction result on toy model

- Simple model: ZDC signal distributed as Gaussian + Poisson pileup.
- Method is validated by the toy model.

Pileup correction

Results are consistent with the expectation. The $\mu = 0.18$ result is used in the following step.

5. Application 1: Centrality with ZDC in pPb collisions

Centrality with ZDC in pPb collisions

Number of spectator neutrons:

- Unbiased centrality estimator in pPb collisions
- Theoretical model needed to describe the relation

 $\langle N_{coll} \rangle = f(N_{neuton})$

- Models working only for lower energies
- Measuring spectator neutron multiplicity distribution: useful input for tuning MC event generators to describe LHC energies

6. Application 2: Unfolding neutron number distribution

Unfolding

Assuming Gauss shape ZDC response for single neutron

Assuming linear ZDC response

Unfolding

Using linear regulatization to unfold neutron number distribution

Summary

- Zero Degree Calorimeter ZDC
- Spectator neutrons are observed with CMS ZDC
- ZDC is calibrated using neutron peaks
- Pile-up corrected with Fourier transform method
- Neutron number distribution unfolded
- Physics capabilities:
 - Tagging UPC events
 - Centrality estimator
 - Measuring spectator neutron multiplicity distribution

Thank you for your attention!

Supported by the ÚNKP-17-3 New National Excellence Program of the Ministry of Human Capacities

7. Backup

Cherenkov angle:

$$\begin{aligned} \cos\theta &= \frac{1}{n\beta} \\ \beta &\approx 1 \quad \text{for relativistic particles,} \\ n &\approx \sqrt{2} \quad \text{for quartz fiber} \\ &\Rightarrow \theta &\approx 45^{\circ} \end{aligned}$$

Example fits - 1

Run number	286178	286301	286302	286314
1 n peak location 1 n peak width	$\begin{array}{c} 59.2 \pm 0.04 \\ 14.24 \pm 0.02 \end{array}$	$\begin{array}{c} 63.70 \pm 0.05 \\ 15.25 \pm 0.03 \end{array}$	$\begin{array}{c} 59.02 \pm 0.04 \\ 13.94 \pm 0.03 \end{array}$	$\begin{array}{c} 55.79 \pm 0.03 \\ 13.14 \pm 0.03 \end{array}$

Example fits – 2

Run number	286178	286301	286302	286314
1 n peak location 1 n peak width	$\begin{array}{c} 59.2 \pm 0.04 \\ 14.24 \pm 0.02 \end{array}$	$\begin{array}{c} 63.70 \pm 0.05 \\ 15.25 \pm 0.03 \end{array}$	$\begin{array}{c} 59.02 \pm 0.04 \\ 13.94 \pm 0.03 \end{array}$	$\begin{array}{c} 55.79 \pm 0.03 \\ 13.14 \pm 0.03 \end{array}$

Unfolding with linear regularization

Solve problem as a linear optimization problem:

 $\mathbf{R} \cdot \mathbf{u} = \mathbf{c}$

R: response matrix

- **u**: unknown neutron distribution
- **c**: measured ZDC spectrum

Task: search for an **u** vector, which fulfils the equation above and 'smooth enough'.

Unfolding with linear regularization

Minimize

$$(\mathbf{R} \cdot \mathbf{u} - \mathbf{c})^{\mathsf{T}} \mathbf{V}^{-1} (\mathbf{R} \cdot \mathbf{u} - \mathbf{c}) + \lambda (\mathbf{D} \cdot \mathbf{u})^{2}$$

- **V**: covariance matrix, $V_{ij} \approx \delta_{ij} c_i$
- D: first difference matrix
- λ : regularization coefficient

Need to solve matrix equation:

$$(\mathbf{R}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{R} + \lambda \mathbf{D}^{\mathsf{T}}\mathbf{D})\mathbf{u} = \mathbf{R}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{c}$$