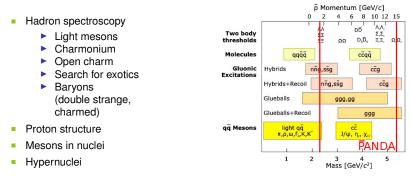


Construction of the Forward Endcap Calorimeter of the PANDA Experiment at FAIR CALOR 2018, Eugene, Oregon, May 22, 2018 Thomas Held Ruhr-Universität Bochum, Institut für Experimentalphysik I

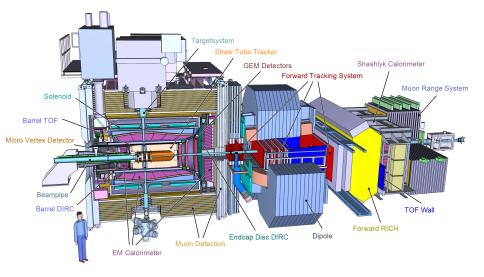
PANDA at FAIR - Facility for Antiproton and Ion Research

- Accelerator facility at Darmstadt (GSI) under construction
- Primary beams: Protons up to 30 GeV/c, heavy ion beams up to 35 GeV/c (U⁹²⁺)
- Secondary beams: Radioactive beams, antiprotons up to 15 GeV/c
- PANDA at FAIR:
 - Located at slow ramping synchrotron storage ring for internal target (HESR)
 - Stochastic and electron cooling of pp beam

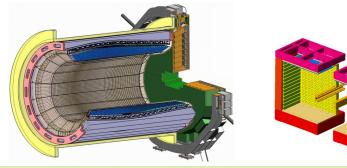
Mode	High	High
	Luminosity	Resolution
$\Delta p/p$	$pprox 10^{-4}$	4 · 10 ⁻⁵
$\overline{\mathcal{L}}$ [cm ⁻² s ⁻¹]	10 ³²	10 ³¹
Stored p	10 ¹¹	10 ¹⁰



The **PANDA** Experiment

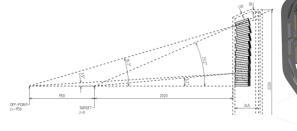

- pp annihilations, fixed hydrogen target (nuclear target)
- p momenta: 1.5 GeV/c 15 GeV/c
- $\sqrt{s} \le 5.5 \text{ GeV}$
 - Associated production of singly charmed baryons (up to Ω_c)
 - Covering upper mass range predicted for charmonium hybrid states

Exclusive studies require full reconstruction of final states


The **PANDA** Detector

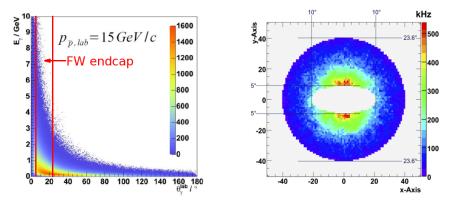
The **PANDA** Calorimeters

- PANDA physics: Full reconstruction of multi-photon and lepton-pair channels of utmost importance
- Low energy threshold (10 MeV)
- Good energy and spatial resolution for photons up to 15 GeV
- Full angular coverage, high yield and background rejection
- Target spectrometer: Barrel part plus two endcaps (homogeneous, 16000 lead tungstate crystals)
- Forward spectrometer: Shashlyk type sampling calorimeter (lead absorbers, plastic scintillators)



RUB

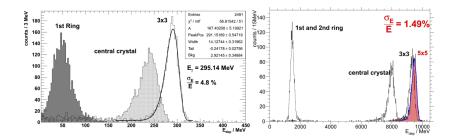
The Forward Endcap of the PANDA Target Spectrometer


- 3856 PbWO₄ crystals
- Crystals read out by Vacuum Photo Tetrodes (VPTTs) and Avalanche Photo Diodes (APDs)
- Angular coverage: 5° < θ < 23.6°</p>
- Magnetic field of up to 1.2 T
- Off-pointing geometry

The Forward Endcap of the PANDA Target Spectrometer

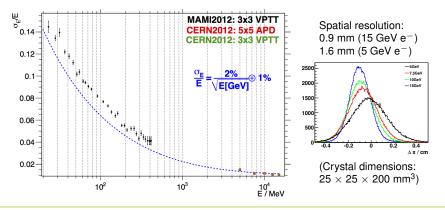

- High dynamic range: 3 MeV 12 GeV
- Single crystal hit rates up to 10⁶ s⁻¹
- Radiation dose rate: 125 Gy/a (at full luminosity)

Prototype Beam Measurements


Location	Particles	Momentum	Emphasis	
CERN/SPS	<i>e</i> +	10, 15 GeV/ <i>c</i>	Max. PANDA energy	
	μ^+	150 GeV/ <i>c</i>	Dep. energy $pprox$ 230 MeV	
ELSA/Bonn	Tagged γ	1, 2.1, 3.1 GeV	Rates up to $2 \cdot 10^6 \text{ s}^{-1}$	
MAMI/Mainz	Tagged γ	20 – 415 MeV	Excellent beam	
			energy resolution	
CERN/SPS	e ⁻	5 – 15 GeV/ <i>c</i>	Fibre / Si-strip	
	$ \pi^+, K^+, \overline{p}$	15, 50 GeV/ <i>c</i>	TrackingStation	

Prototype Beam Measurements

- Tagged photons (Mainz Microtron): E_γ = 295.14 MeV
- 10 GeV positrons (CERN SPS)
- 5 × 5 (3 × 3) crystal matrix (VPTT readout)



Prototype Beam Measurements

- Energy resolution derived from beam times vs. technical design need:
 - Requirements met at high energies
 - Improvements done to finally meet low energy requirements: Improved optical coupling, signal shaping, feature extraction, optimized preamp gain

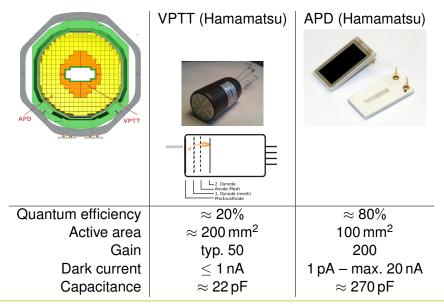
Scintillation Crystals

Crystals in forward endcap only slightly tapered

OTTRUCTION OF DWO I AND DWO II ODVOTAL

All crystals available and screened

THE CHARACTERISTICS OF PWO-T AND PWO-II CRYSTALS				
Characteristics	PWO-I	PWO-II		
	(CMS)	(PANDA)		
Luminescence maximum, nm	420	420		
La, Y concentration level, ppm	100	40		
Light yield of full-size (20 cm) crystal with PMT readout (bialkali-cathode)(at room	8-12	17-22		
temperature, phe/MeV				
Limit of the radiation induced absorption coefficient at 420 nm, m ⁻¹	1.5	1.0		
Light yield temperature coefficient at $T = +20^{\circ} C$, %/ °C	-2.0	-3.0		
Scintillation decay time at room temperature,	10 - 30	10 - 30		
ns				
EMC working temperature, °C	+18	-25		
Statistical term of EMC energy resolution, %	2.7	2.0		
Expected energy range of EMC	150MeV	10MeV -		
	- 1TeV	10GeV		


From: Nuclear Science Symposium Conference Record, 2008. NSS '08. IEEE,

http://dx.doi.org/10.1109/NSSMIC.2008.4774932

10 Thomas Held Construction of the PANDA Forward Endcap EMC

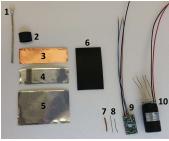
The Photo Sensors

11 Thomas Held Construction of the PANDA Forward Endcap EMC

UNIVERSITÄT BOCHUM RUB

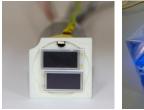
The Readout Units

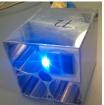
- VPTT Readout Units:
 - One tube per crystal
 - Dynode supply voltage divider PCB directly soldered to tube base
 - One compact preamp PCB


- APD Readout Units:
 - Two APDs per crystal
 - Preamps back to back
 - Common LV supply
 - Seperate HV supplies

The VPTT Readout Units

- Encapsulation of electronics: Shrinking tube filled with casting compound
- Moisture resistant operation (kV)
- Shielding: Self-adhesive copper and aluminum tapes
 - Bar code tag

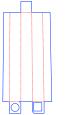



The APD Readout Units

- Encapsulation, shielding: Aluminum tube filled with casting compound
- Blue LED: Stimulated crystal LY recovery

(IEEE TRANSACTIONS ON NUCLEAR SCIENCE,

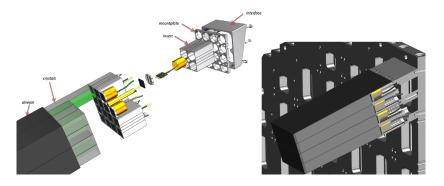
VOL. 60, NO. 6, DECEMBER 2013)



The Crystal Units

- Gluing of readout units to crystals: Crystal units
- Extreme requirements to adhesive:
 - ► Δ T = 50 K
 - Substancial differing thermal expansion coefficents (PbWO₄, quartz glass, epoxy)
 - Extreme smooth (polished) crystal surface
 - Radiation hard optical transparancy
- Adhesive: Dow Corning RTV 3145 (plus DC Primer!)
- Crystals wrapped in 3M DF2000MA mirror foil prior to gluing
- Mirror foil laser cut and grooved

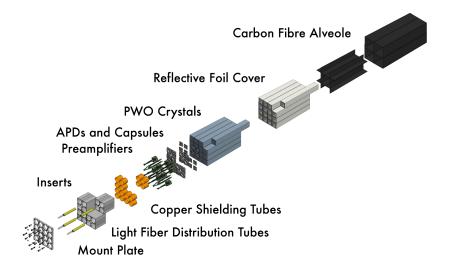
The Crystal Units



- The gluing process:
 - Certain amount (VPTT, APDs) by pneumatic applicator
 - Curing under pressure (1 week)
 - Aligning suspension in production line
 - Monitoring of coupling via camera
 - Several optical checks per unit
 - \rightarrow 20 h time window for removal

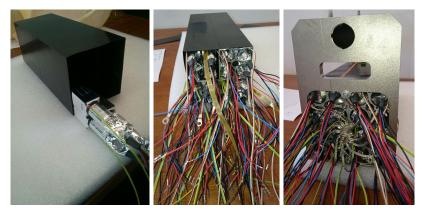
The Crystal Submodules

- Submodules comprising 16 (8) crystals
- Mechanical support structure: Carbon fibre alveoles
- Individual interface pieces: Orientation on back plate


RUHR

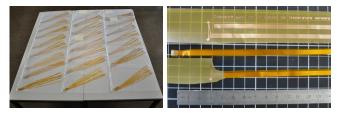
INIVERSITÄT

RUB

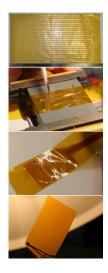


The Crystal Submodules

The Crystal Submodules



- Proper grounding: combining all readout unit shieldings
- Two temperature sensors per submodule


Temperature Monitoring

- Crystal light yield temperature dependent
- APD gain temperature dependent
- High precision monitoring (and regulation) of temperature mandatory
- Dense crystal packing: Need for very thin temperature sensors (Pt wire on Kapton foil)
- No commercial supplier

Temperature Monitoring

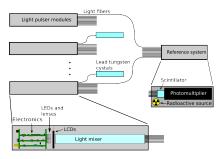
Temperature Sensors:

- TDR: ΔT < 0.1 ℃</p>
- Resolution < 0.02 °C
- Width < 20 mm
- Thickness < 160 µm</p>
- 500 sensors
 (2 per submodule)

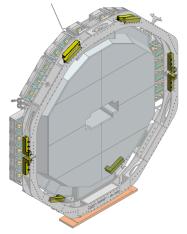
Dedicated readout boards (THMPs)

- 64 input channels
- 8 piggyback boards on 1 mainboard
- 14-bit ADCs
- Calibration of sensors and boards!

Digitization


- 64 channel Sampling ADC boards
- 80 MS/s, 14 bit resolution
- 32 single ended 50 Ω signal inputs
- Analog shaping stages
- High/low gain splitting

- 2 Kintex-7 FPGAs, online feature extraction
- 2 optical interfaces (SFP, 2 Gbit/s)
- Dedicated cooling crates located in support frame
- Total of about 220 boards

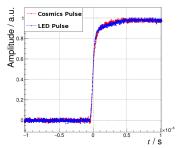


Monitoring System

- Monitoring LY loss, linearity checks
- Modeling scintillation light
- Full dynamic range
- LaBr₃(Ce) based reference system

 10 light pulser modules sitting inside support frame

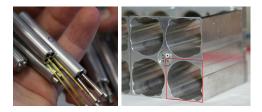
RUHR

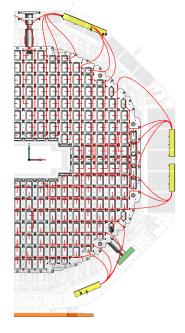

UNIVERSITÄT BOCHUM RUB

Monitoring System

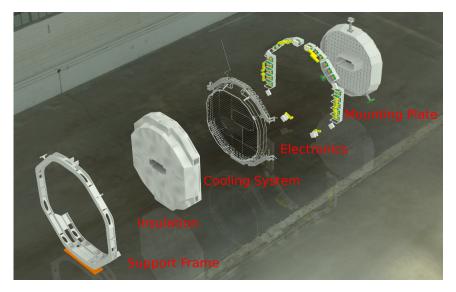
LED pulser:

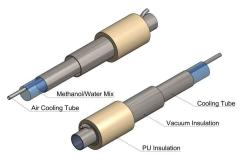
- Blue, red, green light pulses
- Blue: MOSFET based HV discharge circuit
- Red, green: Kapustinsky pulser
- Compact design: LCD attenuators





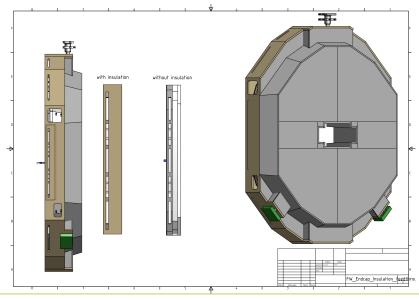
Monitoring System


- 30 km of silica/silica fibres
- Dedicated routing scheme with respect to fibre length
- Spring loaded air coupling to crystals from readout side


Mechanics And Cooling

Cooling

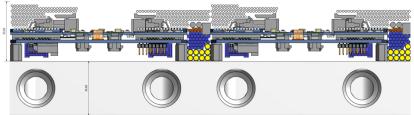
- One central cooling machine
- Main cooling: Bores in backplane
- Additional: front, side, air cooling
- Air tight sealing of cold volume
- Thermal insulation by VIPs



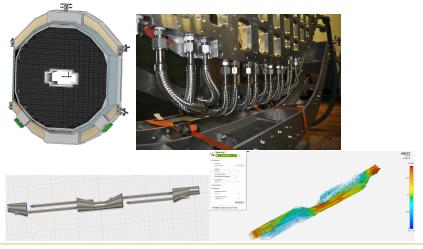
UNIVERSITÄT RUB

Thermal Insulation

28 Thomas Held Construction of the PANDA Forward Endcap EMC


Mechanics and Cooling

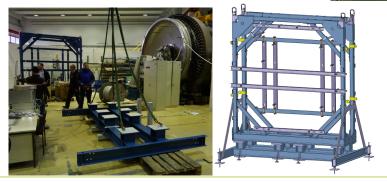
- Fibre and cable routing on back of backplate
- Patch panel PCBs to
 - Feed out preamp signals
 - Connect to temperature sensors
 - Power stimulated recovery LEDs
 - Supply HV, LV
 - Individually adjust APD HV (gain)


RUHR

UNIVERSITÄT BOCHUM RUB

Temperature Regulation

- Reservoire temperature below operating temperature
- Controlled heating of subcircuits: Fast regulation


30 Thomas Held Construction of the PANDA Forward Endcap EMC

Build-up at FZ Jülich

- Assembly at COSY, FZ Jülich starting this year
- Dedicated suspension/transportation frame
- Pedestal to lift up on COSY beam height
- Manipulator arm borrowed from CMS

Summary

- Target calorimeter forward endcap most advanced PANDA detector component
- Several successful beam times with 200 crystal protoype
- Meeting TDR requirements
- Crystal submodule series manufacturing started
- Start of detector erection at FZ Jülich in 2018
- COSY beam time after finishing in Jülich (PANDA preassembly comprising different subdetectors)
- Transport to FAIR

