The ATLAS Electron and Photon Trigger

Samuel Jones on behalf of the ATLAS Collaboration

University of Sussex

samuel.david.jones@cern.ch

CALOR18, Eugene OR, 23rd May

Outline

The e/gamma Trigger at ATLAS

- Brief tour of the most important aspects of the ATLAS detector for e/gamma triggers
- Motivation and design

Calibration and Identification

• Energy calibration and identification methods

e/γ Trigger Performance in Run 2

• e/ γ trigger performance in 2016 + 2017 data

• • • • • • • • • • • • •

Introduction to the ATLAS Electron and Photon Trigger

The ATLAS detector

https://cds.cern.ch/images/CERN-GE-0803012-01

Calorimeter

- Finely segmented calorimeter system
- Liquid Argon Electromagnetic (EM) Calorimeter
- Liquid Argon Hadronic Calorimeter
- Tile Hadronic Calorimeter

Inner detector

Pixel detector

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- SemiConductor tracker
- Transition Radiation Tracker (TRT) provides electron / hadron separation by detection of transition radiation photons

Trigger system

- $\bullet\,$ Reduces event rate to 1 kHz (around 20% allocated to $e/\gamma)$ from beam crossing rate of 40 MHz
- Based on Region-of-Interest (Rol) concept
- Software based High-Level-Trigger is seeded by hardware based Level 1 (L1) trigger

E 5 4

Introduction

e/γ triggers are essential at ATLAS

• SM measurements / backgrounds, diphoton, $W \rightarrow e\nu, Z \rightarrow ee, ...$

$$\sigma = \frac{N_{obs} - N_{background}}{\mathcal{L} \cdot \boldsymbol{\epsilon} \cdot \mathsf{BR}}$$

• New physics, SUSY, $Z' \rightarrow ee$, $G_{KK} \rightarrow \gamma \gamma$, ...

Higher than ever instantaneous luminosity

- Run 1 peak lumi: $7.73 \times 10^{33} \text{cm}^2 \text{s}^{-1}$
- Run 2 peak lumi: $21.4 \times 10^{33} \text{cm}^2 \text{s}^{-1} > 2 \times \text{ larger!}$
- Want to keep as much physics as possible
- Online e/

 selection should be as close as
 possible to offline to keep efficiency high
- 25 ns bunch spacing \rightarrow 40 MHz bunch crossing rate
- Only $\sim 1 \text{ kHz}$ can be recorded
- Need to keep the rates under control

Year	\sqrt{s}	Peak inst. lumi	Pileup	∫L	
	[TeV]	[10 ³³ cm ⁻² s ⁻¹]	$<\mu>$	_{fb} -1	
2011	7	3.65	9.1	5.08	
2012	8	7.73	20.7	21.3	
2015	13	5.0	13.4	3.9	
2016	13	13.8	25.1	35.6	
2017	13	20.9	37.8	46.9	
2018	13	6.9	21.4	~ 60	
0010			1.1		

20	18	3 va	lues	correct	at	time	of	writi	ing
----	----	------	------	---------	----	------	----	-------	-----

https://atlas.web.cern.ch/Atlas/GROUPS/DATAPREPARATION/PublicPlots /2018/DataSummary/figs/peakLumiByFill.pdf

The ATLAS e/γ triggers

The Electron and Photon Trigger (L1)

Level 1 (L1) hardware-based trigger

- L1Calo trigger seeds Rol for EM cluster reconstruction
- Based on trigger towers in $\eta \phi$ plane with granularity 0.1×0.1
- η-dependent E_T thesholds take into account energy loss in detector material
- Sliding-window algorithm (2×2 trigger towers) identifies local energy maxima (Rol)
- Jet rejection using energy sum in hadronic isolation ring and core

Image: A math a math

L1 Naming conventions: V indicates η dependent $E_{\rm T}$ threshold, H indicates hadronic core isolation, I indicates electromagnetic isolation

The Electron and Photon Trigger (HLT)

High Level Trigger (HLT)

- e/γ HLT algorithm flow consists of two main steps
 - · Fast algorithms to reject events early
 - Precise algorithms for efficient identification of electrons and photons

Fast algorithm step:

- Cut-based selection for photons with requirements on calorimeter variables
- Calorimeter selection for electron clusters is based on an ensemble of Neural Networks (ringer algorithm)
- See today's dedicated talks:

"The ATLAS High-Level Calorimeter Trigger in Run-2" "An Ensemble of Neural Networks for Online Electron Filtering at the ATLAS Experiment."

- Tracks associated to clusters:
 - $p_{
 m T}^{
 m track} > 1$ GeV, $\Delta \eta < 0.3$ for $E_{
 m T} < 20$ GeV
 - $p_{
 m T}^{
 m track} > 2$ GeV, $\Delta \eta > 0.2$ for $E_{
 m T} > 20$ GeV

electrons only

The Electron and Photon Trigger (HLT)

High Level Trigger (HLT)

- e/γ HLT algorithm flow consists of two main steps
 - Fast algorithms to reject events early
 - Precise algorithms for efficient identification of electrons and photons

Precision algorithm step:

- Cut-based identification of photons
- Likelihood identification of electrons
- As close as possible to offline selection
 - Super-clustering is not currently used (coming soon!)
 - Gaussian Sum Filter is not currently used (coming soon!)
 - No difference between converted and unconverted photons (no tracking)

Calibration and Identification

Cluster energy calibration

- Corrects for energy loss / leakage upstream and outside of calorimeter
- Simplified version of offline reconstruction
- BDT used to determine correction factors
- Separate calibrations for electrons and photons
- No separation between unconverted / converted photons \rightarrow major source of difference wrt. offline reconstruction

https://twiki.cern.ch/twiki/pub/AtlasPublic/ EgammaTriggerPublicResults/EleETResVsEta.pdf

https://twiki.cern.ch/twiki/pub/AtlasPublic/ EgammaTriggerPublicResults/EleRes_includeCrack.png

Energy resolution

- Excellent resolution in most regions
- Larger deviations in the crack region $(1.37 < |\eta| < 1.52)$ where significant quantity of material servicing the detector causes energy loss and reduction in performance

An alternative algorithm: Topological Superclusters

https://cds.cern.ch/record/2298955/files/ATL-PHYS-PUB-2017-022.pdf?version=1

Topological Superclusters

- Introduced for offline identification in 2017
- Soon to implemented online
- Alternative to sliding-window algorithm
- Dynamic **superclusters** built from topo-clusters
- Allow reconstruction of low energy showers, O(100 MeV)

https://cds.cern.ch/record/2298955/files/ATL-PHYS-

Selecting topo-clusters to build superclusters

- can be associated to electron or converted photon to form a supercluster
- Allow recovery of energy lost to bremsstrahlung
- 30 40% improvement in energy resolution (largest improvements at low $E_{\rm T}$)
- These translate into 5-10% improvement in mass resolution (tested in $J/\psi \rightarrow ee$, $Z \rightarrow ee$, $H \rightarrow \gamma\gamma$, $H \rightarrow 4l$ simulations)
- Similar improvement expected at HLT

Samuel Jones (University of Sussex)

11 / 24

e/γ Discriminating Variables

Common set of calorimeter discriminating variables used for photon and electron ID

Cut-based selection for photon ID

 ΔE , Eratio

Shapes

 Likelihood-based MVA method for electron ID + additional tracking and cluster-track matching variables

Variables and Position								
	Strips	2nd	Had.					
Ratios	f1, fside	R_{η}^* , R_{ϕ}	R _{Had.} *					
Widths	We 2. We tat	$W_{n,2}^*$	-					

* Used in PhotonLoose

Image: A matrix and a matrix

Electron ID

- Likelihood (LH) based MVA technique: construct signal / background PDFs from electron discriminating variables
- Combine into discriminant d_L

$$d_{\mathcal{L}} = \frac{\mathcal{L}_{S}}{\mathcal{L}_{S} + \mathcal{L}_{B}}, \quad \mathcal{L}_{S(B)}(\vec{x}) = \prod_{i=1}^{n} P_{S(B),i}(x_{i})$$

 $\bullet~20\%$ lower rate for same efficiency as cut-based selection used in Run 1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Electron Identification

LH used to define four ID operating points (OPs)

- Referred to as Ihvloose, Ihloose, Ihmedium, Ihtight
- Each uses the same variables to define the LH discriminant
- Sample selected by each OP are subsets of one another
- OPs differ by efficiency versus purity
- Plot show offline efficiencies

Keep as close as possible to offline selection

- Some important differences between online and offline LH
- No transverse impact parameter cut applied
- Δp/p not used since the GSF algorithm is not implemented yet (time consuming)
- Ratio E/p not used at high E_T (loose ID electron trigger used)
- μ instead of $N_{\rm vtx}$ for the pileup correction

< □ > < ^[] >

Isolation

- Isolation requirement provides further discrimination against eg. electrons originating from converted photons and hadronic activity
- Variable track isolation applied for electrons at HLT
 - ivarloose: ptvarcone20/p_T < 0.1
 - p_T sum of non-electron associated tracks in cone of size 10 GeV / p_T surrounding electron candidate (maximum cone size 0.2)
- Calometric isolation now applied for photons at HLT
 - Using the $E_{\rm T}$ sum of topo-clusters in a cone surrounding the photon candidate
- Note: no background subtraction applied in figures

16 / 24

Online Tracking

Sources of inefficiency at HLT

- Precision tracking is a major source of inefficiency at HLT, measured wrt. offline + L1 reconstruction
- Kalman filter is currently used for electron tracking at HLT
- For electrons, radiative losses can be substantial, altering the track
- Non-linear fitter more suitable for estimating track parameters under such conditions

https://cds.cern.ch/record/1449796/files/ATLAS-CONF-2012-047.pdf?version=1

Gaussian Sum Filter (GSF)

- Generalisation of the Kalman fitter, splitting experimental noise into Gaussian components, using Kalman filter to process each one
- \bullet Improved reconstruction efficiency (up to 6%) for most η
- Introduced offline in 2012, soon to be implemented at HLT
- Expect similar improvements due to improved resolution in tracking variables

https://twiki.cern.ch/twiki/pub/AtlasPublic/EgammaTriggerPublicResults/ el_trigger_composition_8e33.pdf

Trigger rates depend heavily on $E_{\rm T}$ threshold

- Single electron dominated by W
 ightarrow e
 u
- Sample purity is affected by trigger threshold
- In Run 2 HLT threshold kept at Run 1 level for as long as possible
- As instantaneous luminosity increases, trigger selection tightened to keep rates under control
- Tightening the ID level at HLT can significantly reduce the rate eg. *Ihmedium* \rightarrow *Ihtight* gives \sim 20% rate reduction

Run 2 Trigger Progression

Rates are dependent on instantaneous luminosity / pileup conditions

- Linear correlation (as expected)
- As these increase, it becomes necessary to tighten trigger selections to manage rates
- Try to maintain stability in trigger selection for physics analyses

Year		HLT ET	HLT	HLT track		L1 <i>E</i> T	L1
2015	e	24	Ihmedium	no isolation	L1EM	20V	Н
2016	e	26	lhtight	ivarloose	L1EM	22V	HI
2017	е	26	lhtight	ivarloose	L1EM	22V	HI
2018	е	26	lhtight	ivarloose	L1EM	22V	HI

e/γ Trigger Performance in Run 2

Image: A math a math

Electron Trigger Performance

Electron trigger performance for full 2016 dataset

- Efficiency measured using Tag and Probe method with $Z \rightarrow ee$
- At high E_{T} track isolation losses become important
- Lowest unprescaled electron trigger ORed with non-isolated high-threshold triggers
- Ihvloose triggers used as single leg for di-electron triggers

https://twiki.cern.ch/twiki/pub/AtlasPublic/

Excellent data / MC agreement

EgammaTriggerPublicResults/Eff_eta_singleOR_full2016.pdf Trigger Efficiency Trigger Efficiency ATLAS Preliminary ATLAS Preliminary Data 2016 Vs = 13 TeV 335 fb⁻¹ Data 2016. √s = 13 TeV. 33.5 fb⁻¹ 0.8 0.8 0.6 0.6 HLT e26 Ihtight nod0 ivarloose OR HLT_e17_lhvloose_nod0, offline electron E_ > 18 GeV HLT_e60_Ihmedium_nod0 OR HLT e140 lhloose nod0 0.4 0.4 Data Data Z→ ee MC 0.2 02 ▲ Z→ ee MC -2 -1.5 -1 -0.5 0 0.5 1 1 20 40 60 80 100 120 140 15

https://twiki.cern.ch/twiki/pub/AtlasPublic/ EgammaTriggerPublicResults/Rate_electron_full2016.pdf

Samuel Jones (University of Sussex)

CALOR18, Eugene OR, 23rd May 21 / 24

2

Electron Trigger Performance

Electron trigger performance in 2017

- Good trigger performance, excellent data / MC agreement
- Robust against pileup
- Tighter identification more pileup dependent (as expected)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ EgammaTriggerPublicResults#Electron_and_photon_trigger_AN1

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ EgammaTriggerPublicResults#Electron_and_photon_trigger_effi

 $\label{eq:https://twiki.cern.ch/twiki/bin/view/AtlasPublic/\\ EgammaTriggerPublicResults#Electron_and_photon_trigger_AN1$

Samuel Jones (University of Sussex)

22 / 24

Photon Trigger Performance

Photon trigger performance for 2016 / 2017

- Measured using Bootstrap method using L1 trigger
- Fully efficient at 5 GeV above threshold
- Lowest threshold triggers in 2017:
 - Single photon g140_tight
 - Multi photon g35_medium_g25_medium
- Good trigger performance, excellent data / MC agreement

https://twiki.cern.ch/twiki/pub/AtlasPublic/ EgammaTriggerPublicResults/Eff_eta_photon_22t_25l_35l_140l_full2016.pdf

Conclusions

Performance in Run 2

- Physics signatures with electrons and photons form an essential part of the ATLAS physics program
- Increased instantaneous luminosity and pileup present significant challenges for data collection
 - Improvements to background rejection (LH, isolation) allow low thresholds to be maintained
- The ATLAS electron and photon triggers have operated at high efficiency throughout Run 2
- Keep offline and online selections as close as possible
 - Further improvements (GSF, superclusters) will bring these closer

< ロ > < 同 > < 三 > < 三

Backup

2

< □ > < □ > < 三

Need a clean, unbiased sample of electrons for efficiency measurement

- Use $Z \rightarrow ee / J/\psi \rightarrow ee / W \rightarrow e\nu$ characteristic decays
- Apply strict selection criteria to one of the decay electrons, the tag
- For W T&P, trigger in E^{miss}_T
- The second decay electron, the probe is identified with the tag by m_{ee} within the mass window
- Probe electrons are used for the efficiency measurement

Image: A mathematical states and a mathem

Electron Discriminating Variables

Type	Description	Name	
Hadronic leakage	Ratio of E_T in the first layer of the hadronic calorimeter to E_T of the EM cluster	Rhad1	
	(used over the range $ \eta < 0.8$ or $ \eta > 1.37$)		
	Ratio of E_T in the hadronic calorimeter to E_T of the EM cluster	Rhad	
	(used over the range $0.8 < \eta < 1.37$)		
Back layer of	Ratio of the energy in the back layer to the total energy in the EM accordion	f_3	
EM calorimeter	calorimeter. This variable is only used below 100 GeV because it is known to		
	be inefficient at high energies.		
Middle layer of	Lateral shower width, $\sqrt{(\Sigma E_i \eta_i^2)/(\Sigma E_i) - ((\Sigma E_i \eta_i)/(\Sigma E_i))^2}$, where E_i is the	$w_{\eta 2}$	1
EM calorimeter	energy and η_i is the pseudorapidity of cell <i>i</i> and the sum is calculated within		
	a window of 3 × 5 cells		
	Ratio of the energy in 3×3 cells over the energy in 3×7 cells centered at the	R_{ϕ}	
	electron cluster position		
	Ratio of the energy in 3×7 cells over the energy in 7×7 cells centered at the	R_{η}	
	electron cluster position		
Strip layer of	Shower width, $\sqrt{(\Sigma E_i(i - i_{max})^2)/(\Sigma E_i)}$, where <i>i</i> runs over all strips in a window	wstot	
EM calorimeter	of $\Delta \eta \times \Delta \phi \approx 0.0625 \times 0.2$, corresponding typically to 20 strips in η , and		
	i_{max} is the index of the highest-energy strip		
	Ratio of the energy difference between the largest and second largest energy	Eratio	
	deposits in the cluster over the sum of these energies		
	Ratio of the energy in the strip layer to the total energy in the EM accordion	f_1	
	calorimeter		
Track conditions	Number of hits in the innermost pixel layer; discriminates against	n _{Blayer}	
	photon conversions		
	Number of hits in the pixel detector	n _{Pixel}	
	Number of total hits in the pixel and SCT detectors	n _{Si}	
	Transverse impact parameter with respect to the beam-line	d_0	
	Significance of transverse impact parameter defined as the ratio of d_0	d_0/σ_{d_0}	
	and its uncertainty	-	
	Momentum lost by the track between the perigee and the last	$\Delta p/p$	
	measurement point divided by the original momentum		
TRT	Likelihood probability based on transition radiation in the TRT	eProbabilityHT	
Track-cluster	$\Delta \eta$ between the cluster position in the strip layer and the extrapolated track	$\Delta \eta_1$	
matching	$\Delta \phi$ between the cluster position in the middle layer and the track extrapolated	$\Delta \phi_2$	1
	from the perigee		
	Defined as $\Delta \phi_2$, but the track momentum is rescaled to the cluster energy	$\Delta \phi_{res}$	1
	before extrapolating the track from the perigee to the middle layer of the calorimeter		
	Ratio of the cluster energy to the track momentum	E/p	1
	4 5		

2

Photon Discriminating Variables

Category	Description	Name	Loose	Tight
Acceptance	$ \eta < 2.37, 1.37 < \eta < 1.52$ excluded	-		~
Hadronic leakage	Ratio of E_T in the first sampling of the hadronic calorimeter to E_T of the EM cluster (used over the range $ \eta < 0.8$ and $ \eta > 1.37$)	R _{had1}	~	√
	Ratio of E_T in all the hadronic calorimeter to E_T of the EM cluster (used over the range $0.8 < \eta < 1.37$)	R _{had}	~	\checkmark
EM Middle layer	Ratio in η of cell energies in 3 × 7 versus 7 × 7 cells	R_{η}	~	\checkmark
	Lateral width of the shower	w_2	1	\checkmark
	Ratio in ϕ of cell energies in 3×3 and 3×7 cells	R_{ϕ}		\checkmark
EM Strip layer	Shower width for three strips around maximum strip	<i>w</i> _{s 3}		\checkmark
	Total lateral shower width	$w_{s tot}$		\checkmark
	Fraction of energy outside core of three central strips but within seven strips	F _{side}		\checkmark
	Difference between the energy associated with the second maximum in the strip layer, and the energy re- constructed in the strip with the minimal value found between the first and second maxima	ΔE		√
	Ratio of the energy difference associated with the largest and second largest energy deposits over the sum of these energies	Eratio		V

2

・ロト ・回ト ・ヨト ・ヨト

Primary electron trigger progression with inst. luminosity

Peak instantaneous		HLT ET	HLT	HLT track		L1 E _T	L1
luminosity		threshold [GeV]	ID	isolation		threshold [GeV]	isolation
$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$							
< 0.8 (Run 1)	e	24	medium	-	L1EM	18V	Н
< 0.5 (Run 2)	e	24	Ihmedium	-	L1EM	18V	н
< 1.0 (Run 2)	е	24	lhtight	ivarloose	L1EM	18V	HI
> 1.0 (Run 2)	e	26	lhtight	ivarloose	L1EM	22V	HI
backup (Run 2)	e	28	lhtight	ivarloose	L1EM	24V	HI

æ

・ロト ・回ト ・ヨト ・ヨト