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The Current 
ATLAS 

Zero Degree 
Calorimeter (ZDC)
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TAN

ZDC PMTs



ATLAS ZDC and BRAN 
Luminosity Monitor Location
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141 m

ATLAS Interaction Point

The ZDC and the BRAN Luminosity Monitor sit in the TAN region 141 m from the ATLAS interaction point
Sensitive to neutral particles unaffected by forward magnets

***Collaboration between ZDC and BRAN for radiation-based upgrade R&D (results shown later)***



ATLAS ZDC 
Module Description

• Tungsten absorbing, fused quartz sampling 
calorimeter 

• Four independently read out modules along 
each ATLAS arm

• 1.1  λint/module

• Only used during heavy ion running

• Measures event-by-event impact 
parameter for Pb+Pb collisions

• Provides triggers for ultra peripheral 
collisions

• Resolution for single spectator neutrons:     
~ 14-17% 

• Sits in extremely high radiation area

• Shower max: ~18 Grad/year (pp 
running)
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Measuring 
Radiation 

Damage to the 
Current ZDC
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Broadband 
tungsten/deuterium 
lamp

Irradiated
quartz rod 



Sample Selection for 
Optical Spectrometry

• Two batches of irradiated fused quartz rods from 
ZDC shipped to the University of Illinois for 
spectrometry analysis

• First batch (rod 1) saw a full year of LHC running in 
2011 (which included pp and Pb+Pb) and another 
p+Pb run in 2012

• SIGNIFICANT signal loss in these rods (see 
visible damage in photo)

• Second batch (rod 2) was irradiated during recent 
heavy ion running (removed during pp runs)
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Rod Material Radiation Exposure

0 GE214 Fused Quartz None (control rod)

1 GE214 Fused Quartz 2010 Pb+Pb, 2011 pp, 
2011 Pb+Pb, 2012 p+Pb

2 GE214 Fused Quartz 2012 p+Pb, 2013 p+Pb, 
2015 Pb+Pb, 2016 p+Pb

Irradiated batch 
(Rod 1)

Unirradiated batch
(Control rod) 

Photo courtesy of Giulio Avoni



Nomenclature and 
Mechanism for 
Radiation Damage

• Nomenclature for SiO2

• Natural (α) quartz: least pure option. 
Crystalline structure

• Fused quartz: natural quartz but glass-like. 
Impurities (eg. Al) at the 10s of ppm level. 
Used in ATLAS ZDC

• Fused silica: synthetic and glass-like. Pure at 
the 10s of ppb level. Most expensive option.

• Schematic shows known defects to characteristic 
SiO4 tetrahedral

• Intrinsic and radiation-based defects cause 
absorption sites that excite and luminesce at 
longer wavelengths

• Purity crucial for high transmission and 
radiation insensitivity
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Schematic of known absorption sites in fused silica

Courtesy of Heraeus



Optical Spectrometry of 
Irradiated Fused Quartz

What we can say so far:

• Fused quartz has very wide absorption 
sites whose size increase with 
increased dosage

• Rod 1: pp running turned rods almost 
completely opaque across full UV-
visible region -- even now, 7 years after 
irradiation

• Rod2: heavy ion running turned rods 
opaque in Cherenkov-transmission 
region ZDC is sensitive to

• Fused quartz unsuitable for long term 
operation during pp or heavy ion 
running in the ZDC
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Tungsten 
Lamp

Deuterium 
Lamp

Radiation Induced Transmission Loss 
(Irradiated / Control)

UIUC 
Light Lab 

Preliminary Result



Matching Absorption Sites to 
Molecular Defects

• Study underway at Ben Gurion University 
to systematically study damage seen in LHC 
cocktails 

• Using Soreq nuclear reactor we’re able to 
irradiate quartz samples to different 
dosages: 
▪ First sample rods irradiated

with 8 * 1017 neutrons/cm2 

• Spectrafluorometry scans 
photoluminescence for different excitation 
wavelengths (see figure)

• Correlating luminescence with particular 
absorption sites can help identify the 
molecular defect
• Knowing this allows us to understand 

creation and annealation criteria
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Courtesy ATLAS group at Ben Gurion University 
(Z. Citron, Y. Bashan, D. Zamalin) 

Example of Spectrafluorometry Analysis 
of Irradiated Quartz Rods: Appearance of 

new absorption line at λ ≈ 530 nm



Future Machine 
Running and 

Physics Goals for 
HL-LHC
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Design Considerations for 
Runs 3 and 4

• pp luminosity (1034 cm-2 s-1)

• Run 3: Increases by 2 x

• Run 4: Increases by 5-7 x 

• Heavy ion luminosity increases 
similarly:

• Nominal p+Pb: 1031 cm-2 s-1

• Nominal Pb+Pb: 1028 cm-2 s-1 

• Crossing angle change during Run 4 
(HL-LHC) causes:

• ZDC to move closer to the IP 
(141 m to 126 m)

• ZDC transverse width to shrink 
from 100 mm to 60 mm
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https://hilumilhcds.web.cern.ch/about/hl-lhc-project

https://hilumilhcds.web.cern.ch/about/hl-lhc-project


Physics Goals for an 
Upgraded ZDC

• HI Physics Goals

• Characterize collisional geometry 
event-by-event

• Light-by-light scattering:       

ATLAS Collaboration in Nature 
Physics 13, 852-858 (2017)

• Gluon saturation in Pb nuclei:

CMS Collaboration in Phys. Lett. B 
772 (2017) 489.

• pp Physics Goals

• BSM searches

• Low-x physics
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Light-by-light collision

Forward-backward ZDC energy 
correlation, reflecting nuclear geometry

Identified UPC event leading to 
CMS J/Ψ low-x measurement

Heavy ion collision



Irradiation Studies 
for an Upgraded 

ZDC

14

Photo courtesy of Marcus Palm

BRAN fused silica 
rods in the TAN



Is there a solution that can withstand 
pp radiation environment in HL-LHC? 
➔ BRAN R&D on Fused Silica! 15

Rod # Material Irradiation

Period

1 Spectrosil 2000 Fused Silica

(High OH)

Control

2 Spectrosil 2000 Fused Silica

(High OH)

2 LHC year: 

04/16 - 12/17

3 Spectrosil 2000  Fused Silica

(High OH, high H2)

1 LHC year: 

04/16 - 12/16

4 Spectrosil 2000 Fused Silica 

(High OH, H2 free)

2 LHC years: 

04/16 - 12/17

5 Suprasil 3301 Fused Silica 

(Low OH, high H2)

2 LHC years: 

04/16 - 12/17

High OH Content

• BRAN luminosity monitor group carries out R&D on fused silica 
and has taken 2 years of live data with various Heraeus rods 
irradiated in the LHC tunnel.

• Different levels of OH and H2 dopants tested

Low OH Content

Transmission in 
undamaged 
fused silica



BRAN Luminosity Monitor: 
Performance of Spectrosil 2000 
for 2 years of Irradiation

• After initial transmission loss  BRAN 
sees flat signal size over two years of 
LHC running!

• Transmission loss occurs early in 
radiation history of fused silica rods

• Rods sent to University of Illinois for 
spectrometry analysis 

• For more details see:

https://indico.cern.ch/event/647714/co
ntributions/2651509/attachments/1557
659/2450420/Palm_HL-
LHC_2017_BRAN.pdf
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Heraeus Spectrosil 2000: Initial losses then stable signal 
amplitude for two years of irradiation in LHC tunnel

Result provided courtesy of Marcus Palm and BRAN Luminosity Monitor

https://indico.cern.ch/event/647714/contributions/2651509/attachments/1557659/2450420/Palm_HL-LHC_2017_BRAN.pdf


BRAN Fused Silica Rods:
Optical spectrometry results
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• 230 nm absorption center:

• Possibly an E’ center

▪ ≡Si•  (oxygen deficiency)

• Rods irradiated for 2 years show same loss as rod irradiated 
for 1 year

▪ Suggests saturation of the absorption site!?

▪ Saturation of transmission loss might explain the 
observed early light losses followed by stable light 
yields at even higher doses. 

• 325 nm absorption center:

▪ Specific defect unknown

▪ Rod 3 appears to have annealed 

▪ Unclear if saturation occurs

• 629 nm absorption center:

▪ Non-bridging oxygen hole center (NBOHC)

▪ ≡Si-O•  (silicon deficiency)

▪ Only shows up in OH-rich rods

▪ Low OH rods show little visible radiation damage!

Radiation Induced Transmission Loss 
(Irradiated / Control)

1 Year of LHC Running: Rod 3 (2015)
2 Years of LHC Running: Rods 2, 4, and 5 (2015 – 2016)



Design Conclusions

• Fused quartz not acceptable in extreme radiation environments

• Fused silica

• After initial transmission loss, PMT signal stable for 2 full years of LHC pp running in extreme radiation area!

• Damage occurs early in radiation history

• Possibly caused by UV absorption site saturation 

• Design possibility: detector pre-irradiation before physics running to reach broad-band stable operation

• Low OH fused silica sees little transmission loss in visible region

• Design possibility: use long pass filter, fused silica prisms, etc to filter UV light completely

• Other applications for radiation hard fused silica:

• Fused silica tiles

• Optical fibers (narrow core + doped cladding)

• PMT windows
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Backups
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BRAN Luminosity Monitor 
Live Data
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• Calibration of data complicated by 
large bunch-to-bunch amplitude 
fluctuations (results have some 
uncertainty)

• Evidence for significant damage to 
PMT window. Likely responsible for 
large portion of the transmission loss

• Low OH rods performed significantly 
better than high OH rods

• Majority of transmission loss 
happened early during run

• For more details, see:

https://indico.cern.ch/event/549979/co
ntributions/2263224/attachments/1371
475/2080303/BRANs_at_HL-
LHC_version5.pptx

PMT signal size for different BRAN rods 
during 2016 LHC run 

https://indico.cern.ch/event/549979/contributions/2263224/attachments/1371475/2080303/BRANs_at_HL-LHC_version5.pptx


BRAN Luminosity Monitor 
Live Data
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• Signal from unirradiated rod divided by signal from 
irradiated rod with both using irradiated PMT windows

• At beginning of the run signal size was different by  ~3 x  … 
after 5 fb-1 they were the same

• Suggests: 
• fused silica damage happened early
• fused silica transmission loss was only ~3 x

• PMT window used during runs suffered 
significant damage

• Significant portion of transmission loss 
seen in BRAN attributable to PMT window

Significant PMT Window Damage

PMT window 
saw ~106 R

Attempt to Unravel PMT-Independent Damage

Rod 2 
(Spectrosil 2000: 
High OH)

1st fb-1 from 
2017 run



Light-by-Light Scattering
22

• Signature: 2 photons and no further activity 
with Pb ions escaping down beam pipe

• ZDC’s role
• UPC trigger: no spectator neutrons 

observed on either arm (heavy ion) 
• Veto for forward neutral particle 

creation (pp and heavy ion)
• BSM search

• If new physics present, additional loop 
corrections may be needed to match 
rate measured at LHCATLAS Collaboration in Nature Physics 13, 852-858 (2017)

See following publications:
• C. Baldenegro, et al. “Probing the anomalous γγγZ coupling at the LHC with proton tagging”
• S. Fichet. “Probing new physics in diphoton production with proton tagging at the Large Hadron Collider”
• S. Fichet, et al. “Light-by-light scattering with intact protons at the LHC: from Standard Model to New Physics”
• O. Kepka, et al. “Anomalous WWγ coupling in photon-induced processes using forward detectors at the LHC”



Gluon Saturation in Pb Nuclei
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• In Pb nuclei gluon wave functions overlap with 
wavefunctions from many different nucleons
• Means gluons saturation effects should be 

visible at higher x  
• CMS, ATLAS, and ALICE have used ZDCs to tag 

ultra-peripheral PbPb colisions
• Photon hits nucleus and produces pair of jets or 

J/Ψ
• ATLAS result (Bottom left): at high x and large 

pT, the dijet results consistent with no 
modification of nuclear matter

• CMS result (Bottom right): at x ~ 0.003 and low 
pT, there is a significant depletion of soft gluons 
in lead nuclei

• Future measurement: Match forward hadrons in 
ZDC with jets in forward calorimeter

At low x gluon density diverges. 
Expectation is for saturation to 
occur at some point creating 
glass-like state of matter 
described by classical field 
equations

ATLAS-CONF-2017-011
CMS Collaboration in Phys. 
Lett. B 772 (2017) 489.



Unirradiated Transmission 
Curves
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High OH Content

Low OH Content

Fused Quartz Transmission Curve (GE 214) Fused Silica Transmission Curves



Fused Silica Defects
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• E’ center ( ≡Si• )
• Hole trapped in oxygen vacancy
• 5.8 eV or 214 nm primary absorption center
• No luminescence emission
• See: L. Skuja “Optical properties of defects in silica” https://link.springer.com/chapter/10.1007/978-94-010-0944-

7_3
• Non-bridging oxygen hole centers (NBOHC)  ( ≡Si-O• )

• Broken Si-O bond (2p bond splitting)
• Reaction b/w paired Hydroxyl groups in OH rich fibers (“wet” silicas)

• ≡Si-O-H  H-O-Si≡ ≡Si-O• H-O-Si≡ +H•
• Can also be created in low-OH silica through ruptured Si-O bond

• Rupture can happen through neutron irradiation or the fiber drawing process (speed of the process)
• ≡Si-O-Si≡                  ≡Si-O• •Si≡

• Absorption band at 4.8 eV (258 nm); another asymmetric absorption band at 1.97 eV (629 nm)
• Photoluminescence band at 1.91 eV (649 nm)
• See: S. Munekuni “Various types of nonbridging oxygen hole center in high-purity silica glass” 

https://aip.scitation.org/doi/abs/10.1063/1.346719

https://link.springer.com/chapter/10.1007/978-94-010-0944-7_3
https://aip.scitation.org/doi/abs/10.1063/1.346719

