# CMS ECAL Monitoring and Calibration in LHC Run 2

## Tanmay Mudholkar

 $On \ behalf \ of \ the \ CMS \ \ Collaboration$ 

CALOR 2018, Session 1, May 21 Eugene, Oregon







# Outline

## Introduction

• ECAL Building Blocks

## 2 Calibration

- Inter-calibration: Motivation
- Inter-calibration: Methods
- Inter-calibration: Results
- Preshower Calibration

## <sup>(3)</sup> Monitoring and Validation using physics events

- Motivation and methods
- Energy scale
- Shower shape



# Outline

# IntroductionECAL Building Blocks

## 2 Calibration

- Inter-calibration: Motivation
- Inter-calibration: Methods
- Inter-calibration: Results
- Preshower Calibration

## 3 Monitoring and Validation using physics events

- Motivation and methods
- Energy scale
- Shower shape

## 4 Summary

## Schematic Diagram

The CMS Electromagnetic Calorimeter consists of 75848 scintillating  $PbWO_4$  crystals and 137216 sampling Si strips with Pb absorber.



# Building Blocks: ECAL Barrel + Endcaps

The CMS Electromagnetic Calorimeter consists of 75848 scintillating  $PbWO_4$  crystals and 137216 sampling Si strips with Pb absorber.



## **Carnegie Mellon University**

# Building Blocks: ECAL Preshower

The CMS Electromagnetic Calorimeter consists of 75848 scintillating  $PbWO_4$  crystals and 137216 sampling Si strips with Pb absorber.



Assembled Preshower Module used in beam tests

## ECAL Preshower

- ECAL Preshower consists of four planes, two in front of each endcap
- Thickness of lead plates:  $\approx 3X_0$
- Each Si sensor consists of 32 "strips", oriented along X in one plane and along Y in the other at both endcaps
- Strip size:  $2.0 \times 63 \times 0.3 \text{ mm}^3$

Higher spatial resolution helps distinguish genuine high-energy photons from close photon pairs (*e.g.* those resulting from  $\pi^0$ -decay).

# Monitoring and Calibration



An algorithm identifies a list of crystals (a "supercluster") in which a photon or electron from the collision is likely to deposit energy.

$$E_{e,\gamma} = F_{e,\gamma} \times \left[ G\left(\eta\right) \times \left\{ \sum_{i \in \text{SC}} S_i\left(t\right) \times \boxed{C_i} \times A_i \right\} + \boxed{E_{\text{preshower}}} \right]$$

This talk focuses on how we obtain the inter-calibration coefficients  $C_i$ , and validate and monitor physics quantities over the data-taking period.

Carnegie Mellon University

# Outline

# IntroductionECAL Building Blocks

## 2 Calibration

- Inter-calibration: Motivation
- Inter-calibration: Methods
- Inter-calibration: Results
- Preshower Calibration

## 3 Monitoring and Validation using physics events

- Motivation and methods
- Energy scale
- Shower shape

## 4 Summary

## Inter-calibration: motivation

• The laser monitoring signal L is used to correct the scintillation signal S for short term effects (*e.g.* radiation-induced damage to crystals during fills), using the formula:

$$\frac{S}{S_0} = \left(\frac{L}{L_0}\right)^{\alpha}$$

- Residual long term drifts of the individual crystal response remain after the laser corrections, which are due to different effects. (*e.g.* the values of α could be slightly different for each crystal, or other ageing effects ...)
- These effects can be monitored and corrected for using physics channels, *e.g.* by exploiting the azimuthal symmetry of the energy deposits in minimum bias events.



Plots on the left (barrel) and right (endcap), show the dispersion of the inter-calibration coefficients versus time during 2016 data taking, obtained with the azimuthal symmetry method.



### **Carnegie Mellon University**

# Inter-calibration: Methods

- We use three methods to inter-calibrate crystal response.
  - $\ \, \bullet \ \, \pi^0 \rightarrow \gamma\gamma \ \, {\rm energy \ \, distribution \ \, peak}$
  - Comparing reconstructed energy with independent measurement of momentum from tracker
  - $\textcircled{O} Z \to ee \text{ distribution}$
- Each method gives independent inter-calibration coefficients which we then combine for a final measurement.

# Inter-calibration method 1: $\pi^0 \to \gamma \gamma$

• One can use the reconstructed invariant masses of photon pairs from  $\pi^0$  to inter-calibrate crystal response, using:

## Method

The peak of the fitted  $m_{\gamma\gamma}$  distribution is ensured to be the same value for each crystal.

• For each crystal, we obtain this fit using all events with one hit in that crystal. Then,

$$C_{i} = \frac{m_{\pi^{0}} \text{ (measured with crystal } i)}{m_{\pi^{0}} \text{ (PDG)}}$$

- Repeated iteratively until convergence.
- Dataset: Special stream of data from dedicated trigger that selects diphoton events close to the  $\pi^0$  resonances, allowing sufficient statistics for inter-calibration and monitoring.

## **Carnegie Mellon University**

# Inter-calibration method 1: $\pi^0 \to \gamma \gamma$



Examples of  $m_{\gamma\gamma}$  distributions, with fits to the data, for selected crystals in the barrel (left) and in the endcaps (right).

**Carnegie Mellon University** 

# Inter-calibration method 2: E/p ratio

• One can use the momentum reconstructed by the CMS tracker (strips + pixels) as a reference.

## Method

The fraction E/p in each crystal is made to fit a common underlying template, where E = ECAL supercluster energy, p = tracker momentum.



We derive the crystal inter-calibrations by iteratively scaling the coefficients  $C_i$  until the E/p distribution in each crystal converges to the template.

### **Carnegie Mellon University**

# Inter-calibration method 3: $Z \rightarrow ee$

• One can use the known mass and lifetime of  $Z \rightarrow ee$  as a reference.

## Method

The overall Z-peak as reconstructed from data in all crystals is fitted to a convolution of the known natural Z-shape (which depends on Z-mass and lifetime), and a spread due to resolution effects.

- The mass and decay width of Z are obtained from PDG.
- We use a likelihood maximization algorithm, with the inter-calibration coefficients  $C_i$  as parameters.
- In addition to the inter-calibration parameters, we include the resolution in several  $\eta$  bins as parameters, allowing us to obtain estimates of the  $\eta$ -binned energy resolution.

## Inter-calibration: Combination

Assuming no correlation between the three different methods used to inter-calibrate crystal response, we have: (n.b. both systematic and statistical uncertainty are included in the estimates of the precision)

$$\begin{aligned}
\sigma_1^2 + \sigma_2^2 &= \sigma_{1-2}^2 & \sigma_1^2 = \frac{1}{2} \left( \sigma_{1-2}^2 + \sigma_{1-3}^2 - \sigma_{2-3}^2 \right) \\
\sigma_1^2 + \sigma_3^2 &= \sigma_{1-3}^2 & \longrightarrow & \sigma_2^2 = \frac{1}{2} \left( \sigma_{2-3}^2 + \sigma_{1-2}^2 - \sigma_{1-3}^2 \right) \\
\sigma_2^2 + \sigma_3^2 &= \sigma_{2-3}^2 & \sigma_3^2 = \frac{1}{2} \left( \sigma_{1-3}^2 + \sigma_{2-3}^2 - \sigma_{1-2}^2 \right)
\end{aligned}$$

Finally the combined inter-calibration value for each crystal is obtained as the weighted mean of the values obtained by each individual method.

Note: For the endcaps in 2017, we only use the  $Z \rightarrow ee$  method because it is much more precise than the other methods; therefore, we do not have estimates of the precision from the system of equations.

**Carnegie Mellon University** 

## Inter-calibration: 2017 Precision



Individual and combined inter-calibration precision: compare 2015 results (on the left) with 2017 results (on the right). For 2017 results, the precision from  $Z \to ee$  and  $\pi^0 \to \gamma\gamma$  decays is at the level of the systematic error, while the statistical errors are still dominant for the E/p precision at  $|\eta| > 1$ . The black points represent the combined weighted precision.

### **Carnegie Mellon University**

# Preshower calibration



Fitted around the peak to a Landau convoluted with a Gaussian.

- Calibration of the preshower involves calculating the conversion from ADC counts to GeV.
- A few times per year we take a special run with the preshower in high gain mode; this allows us to see the MIP peak and calibrate the preshower sensors.
- We reconstruct MIP peak per channel  $\rightarrow$  gives ADC-to-MIP conversion.
- MIP-to-GeV conversion is known: 1 MIP = 80.4 keV

## **Carnegie Mellon University**

# Preshower MIP stability



MIP response evolution with respect to beginning of 2017 in the preshower.

ES sensors in high  $\eta$  regions are affected more by radiation damage. Carnegie Mellon University Tanmay Mudholkar 18/28

# Outline

# IntroductionECAL Building Blocks

## 2 Calibration

- Inter-calibration: Motivation
- Inter-calibration: Methods
- Inter-calibration: Results
- Preshower Calibration

## 3 Monitoring and Validation using physics events

- Motivation and methods
- Energy scale
- Shower shape

## 4 Summary

# Motivation and Methods

- Monitoring: To ensure that reconstruction is stable throughout the year, we monitor some quantities obtained from reconstructed physics objects.
- Validation: At the end of the year, we apply all corrections (laser monitoring, inter-calibration coefficients, etc.), and plot the same quantities over the year, expecting that there should be no drift.

## • Quantities Monitored:

- Energy scale:  $\pi^0$ -mass,  $Z \to ee$
- **2** Shower shapes:  $Z \to ee$

## $\pi^0$ -mass

## Validates: Energy Scale



The relative energy scale measured from the invariant mass distribution of  $\pi^0 \rightarrow \gamma \gamma$  decays in the ECAL Barrel remains stable throughout the year after applying transparency corrections (more on laser corrections in Amina's talk).

### **Carnegie Mellon University**

## $Z \rightarrow ee$ invariant mass

## Validates: energy scale



The invariant mass in  $Z \rightarrow ee$  events is observed to be stable throughout the year once all corrections have been applied.

**Carnegie Mellon University** 

## $Z \to ee R_9$

## Validates: shower shape stability



The variable  $R_9 \equiv \frac{E_3 \times 3}{E_{SC}}$  is one of the variables typically used in CMS physics analyses to identify EM showers using their shower shape. It stays stable throughout the year in  $Z \rightarrow ee$  events.

### **Carnegie Mellon University**

# Outline

# IntroductionECAL Building Blocks

## 2 Calibration

- Inter-calibration: Motivation
- Inter-calibration: Methods
- Inter-calibration: Results
- Preshower Calibration

## 3 Monitoring and Validation using physics events

- Motivation and methods
- Energy scale
- Shower shape

## 4 Summary

## Performance of 2017 calibration



**Black**: reconstruction performed just at the end of data-taking; only low level parameters were optimized for this reconstruction with respect to the prompt processing due to short available time (pedestals, laser correction, timing, ...)

**Blue**: reprocessing done with the new 2017 calibrations.

# Reconstruction with the latest calibrations significantly improves the resolution.

# Performance of 2017 calibration



The Z-mass peak is visibly improved by updating the calibration.

**Carnegie Mellon University** 

# Summary

- The LHC environment in 2017 has been challenging with high instantaneous luminosity, high pile-up and varying bunch filling schemes.
- The ECAL pulse amplitude reconstruction is robust with respect to pile-up effects and the many validation and monitoring methods that we have developed allow to follow and correct the evolution of the calorimeter.
- Thanks to the high integrated luminosity collected in 2017, we have calibrated the CMS ECAL exploiting many physics channels, including for the first time  $Z \rightarrow ee$  at single crystal granularity.
- The new calibrations allow us to achieve a very good energy resolution in both the Barrel and the Endcaps.

# BACKUP SLIDES

**Carnegie Mellon University** 

# Inter-calibration using $\phi$ -symmetry

• Because of the symmetry of the CMS and ECAL around the beam axis, over a long enough time period:

## Assumption

The net energy flux through a crystal should be independent of the polar angle  $\phi$  of the crystal.

• The coefficients  $C_i$  are then set such that in each  $\eta$ -ring, the average of the coefficients over all crystals is 1; allows for precise inter-calibration along  $\phi$  but not along  $\eta$ .

# ECAL Alignment: EB + EE



**Carnegie Mellon University** 

Tanmay Mudholkar

30 / 28

# ES Alignment



## Timing

## Validates: pulse shapes, rechit reconstruction



The timing drifts slightly throughout the year; however, this quantity is regularly monitored and pulse shapes are kept up-to-date to ensure that physics analyses are not affected.

### **Carnegie Mellon University**

## Crystal noise

## Validates: shower shape, lepton isolation



The RMS of the readout in absence of signal is a measure of the noise and slowly drifts upwards with radiation-induced damage to the APDs.

### **Carnegie Mellon University**

# Measuring deposited energy



(Candidate  $H \to \gamma \gamma$  event)

The energy reconstruction algorithm assigns an energy to an observed collection of crystal deposits.

**Carnegie Mellon University** 

# Inter-calibration: more on E/p

$$C_{i}^{\mathrm{N}} = C_{i}^{\mathrm{N}-1} \times \frac{\sum\limits_{\mathrm{good \ electrons}} F_{i} \times P\left(E_{\mathrm{SC}}^{\mathrm{N}-1} | p_{\mathrm{trk}}\right) \times \frac{p_{\mathrm{trk}}}{E_{\mathrm{SC}}^{\mathrm{N}-1}}}{\sum\limits_{\mathrm{good \ electrons}} F_{i} \times P\left(E_{\mathrm{SC}}^{\mathrm{N}-1} | p_{\mathrm{trk}}\right)}$$

**Carnegie Mellon University** 

Inter-calibration: more on  $Z \rightarrow ee$ 

• Likelihood function:

$$\mathcal{L} = \prod_{Z \to ee \text{ events}} \text{Voigt}\left(m_{ee}, \sigma_{ee}, M_Z, \Gamma_Z\right)$$

where

$$m_{e_1e_2} = \sqrt{2 \times E_{\text{corrected}}(e_1) \times E_{\text{corrected}}(e_2) \times (1 - \cos \theta_{12})}$$
$$\sigma_{e_1e_2} = \frac{1}{2} \times M_Z \times \left(\frac{\sigma_E}{E}(e_1) \bigoplus \frac{\sigma_E}{E}(e_2)\right)$$
$$E_{\text{corrected}} = \frac{E_{ECAL}}{r(\eta)} + E_{\text{Preshower}}$$

• Note that this also allows us to extract the energy resolution binned in  $\eta$ .

**Carnegie Mellon University**