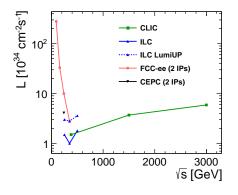
Fine-grained calorimeters for experiments at CLIC and FCC-ee

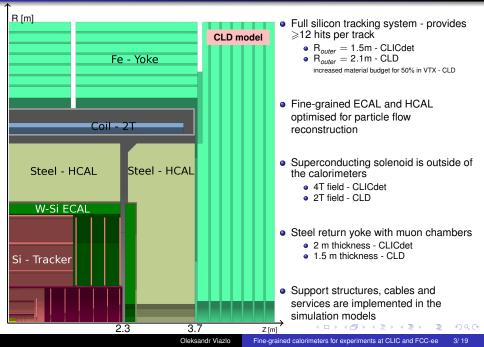
Oleksandr Viazlo on behalf of the CLICdp and FCC-ee collaborations

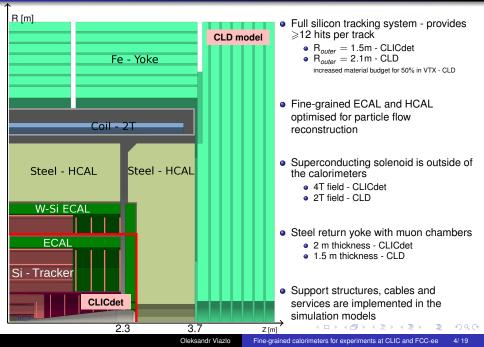

CERN

22 May 2018

Introduction

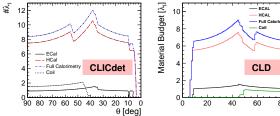
CLIC


- Compact Linear Collider (e^-e^+)
- 3 energy stages: 380 GeV, 1.5 TeV, 3 TeV
- bunch trains are 156 ns long and distance between trains is 20 ms
 → Power Pulsing of electronics

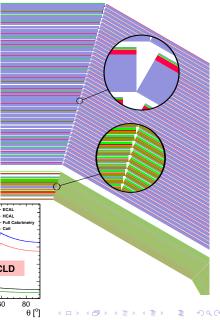

- FCC-ee

- Future Circular Collider (e^-e^+)
- 4 energy stages: Z, WW, HZ, tt
- Bunch spacing: 20 8533 ns
- Both experiments demand state-of-the-art detectors with:
 - low-material tracking system
 - precise calorimetery
- CLICdet proposed detector model for CLIC with 4 Tesla magnetic field
- CLD detector model for FCC-ee derived from CLICdet and optimized for FCC-ee experimental conditions
- Maximum possible detector magnetic field at FCCee is 2 Tesla (to preserve beam emittance)

CLD and CLICdet detector models



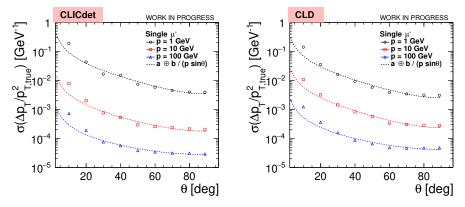
CLD and CLICdet detector models



Calorimetry

- Electromagnetic Calorimeter
- Si-W sampling calorimeter
- cell size 5x5 mm²
- 40 layers (1.9 mm thick W plates)
- Depth: 22 X₀, 1 λ_I, 20 cm
- Hadronic Calorimeter
- Scintillator-steel sampling calorimeter
- cell size 30x30 mm²
- 60 layers (CLICdet) / 44 layers (CLD) (19 mm thick steel plates)
- Depth: 7.5 λ_I (CLICdet) / 5.5 λ_I (CLD)

Oleksandr Viazlo


5/19

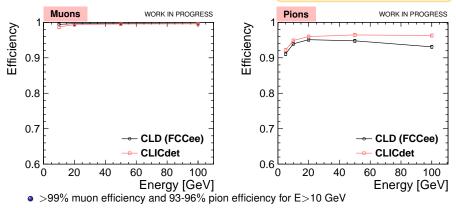
Simulation and reconstruction software tools

- Performance studies of CLICdet and CLD detector models were done with iLCSoft software used by the CLIC and ILC community.
- Detector geometry description and event simulation: DD4hep
- Event Reconstruction: Marlin
- Track Pattern recognition: ConformalTracking
- Particle Flow Reconstruction: PandoraPFA
 - PandoraPFA is used both for jet and isolated particle ID studies
- Geometry of detector models are implemented in lcgeo package:
 - CLIC_03_v14
 - FCCee_o1_v03

Detector performances have been studied with full detector simulation

• Transverse momentum resolution for single muons with CLICdet and CLD detector models as a function of θ for 1, 10 and 100 GeV energies

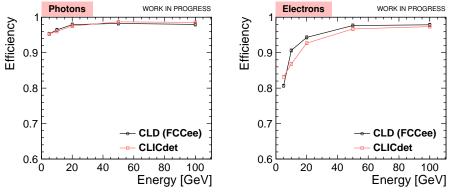
- Overall comparable tracking performance of both detectors
- Achieved momentum resolutions for 100 GeV muons at $\theta = 90^{\circ}$:


Particle ID efficiency

→ Ξ →

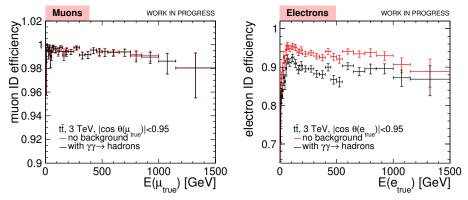
Single particle identification efficiency

- Efficiency = fraction of matched reconstructed particles out of the simulated MC particles:
 - reconstructed particle of the same type as simulated MC particle
 - angular matching: $\Delta \theta < 1$ mrad and $\Delta \phi < 2$ mrad
 - energy matching:
 - charged particles: $|p_T^{truth} p_T^{PFO}| < 5\% p_T^{truth}$
 - photons: $\Delta E < 5 \times \sigma$ (ECal) $\approx 0.75 \times \sqrt{E}$


Sample: single particles with flat $cos(\theta)$ distribution and fixed energy

 Inefficiency at high energies with CLD is caused by a larger rate of pions being mis-reconstructed as muons

Single particle identification efficiency


- Photon merging procedure is used to recover inefficiency due to photon conversion and electron Bremsstrahlung
- Pandora electron ID parameters were retuned in order to recover hard electron Bremsstrahlung (loosen maximum track-cluster distance requirement to recover events when a track is not associated to either of EM clusters)

- $\bullet\,>95\%$ efficiency for $>\!10$ GeV photons and $>\!20$ GeV electrons
- Further optimization of electron Bremsstrahlung recovery procedure may improve electron efficiency (e.g. at lower energies)

Lepton identification efficienty in $t\bar{t}$ events at CLIC

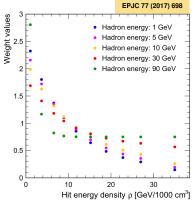
- Lepton ID efficiency in $t\bar{t}$ events at 3 TeV at CLIC
- Only direct leptons from W decays are considered
- Requirement of angular matching within 1° is imposed.

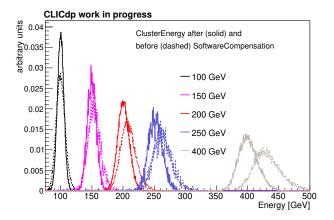
- Muons are identified with more than 98% efficiency for all energies
- Electrons are identified with 90-95% efficiency at energies of 20 GeV and higher
- Presence of beam background doesn't affect muon ID while electron ID decreases by about 5%

Jet performance

 $\underbrace{\hspace{1cm} \overset{}{\overset{}} \\ \overset{}}{\overset{}} \overset{}{\overset{}} \\ \overset{}{\overset{}} \\ \overset{}{\overset{}} \\ \overset{}}{\overset{}} \overset{}{\overset{}} \\ \overset{}}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \\ \overset{}}{\overset{}} \overset{}{\overset{}} \overset{}}{\overset{}} \overset{}{\overset{}} \overset{}{\overset{}} \\ \overset{}}{\overset{}} \overset{}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}{\overset{}} \overset{}}{\overset{}} \overset{}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} \overset{}}{\overset{}} } \overset{}}{\overset{}}$

伺 ト イ ヨ ト イ ヨ

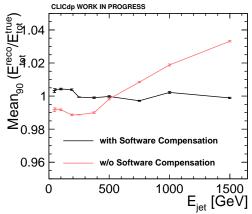

- Software compensation is an energy "regularisation" techniques (JINST 7 (2012) P09017)
- Idea is to correct with software for (on average) larger response of hadron showers with large electromagnetic component → improves energy measurement of cluster energies
- Software compensation technique (developed by CALICE) is implemented in PandoraPFA now


Software compensation:

- Electromagnetic component of shower typically denser
- Software compensation reweights hits in HCAL depending on the hit energy density
- Weights are calculated by formula: $\omega(\rho) = p_1 \exp(p_2 \rho) + p_3$

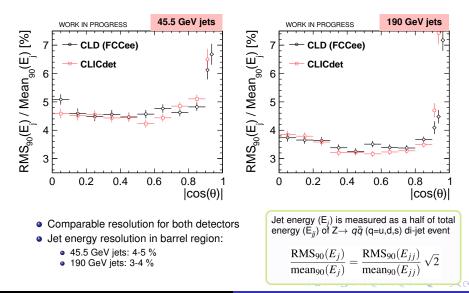
where each parameter is an energy dependent \rightarrow 9 different parameters are used in total

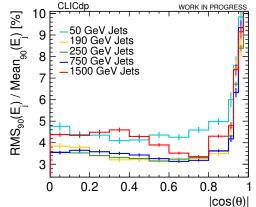
Detector specific software compensation weights were obtained for CLICdet and CLD



- Software compensation weights derived using several fully simulated neutron and K0L single particle datasets
- Mean and resolution after software compensation largely improved
- Software compensation corrects for nonlinear response of hadrons on the fly

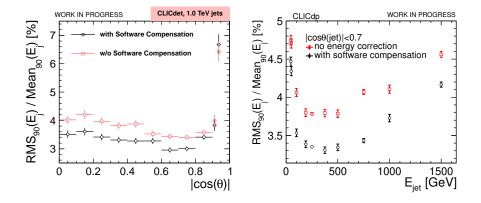
→ Ξ →


 Dijet events of a Z-like particle decaying into pair of light quarks (u, d, s) at several centre-of-mass energies


- Ratio of total reconstructed energy to total simulated energy (excluding neutrinos)
- Software compensation provides reconstruction of total energy within 0.5% accuracy in light-quark dijet sample.

Jet energy resolution with dijet events

• Dijet events of a Z-like particle decaying into pair of light quarks (u, d, s) at several centre-of-mass energies



Jet energy resolution at CLIC at high energies

- Default Software compensation are tuned for hadrons up to 100 GeV (optimized for ILD detector at ILC), at CLIC expect to reach higher hadron energies, at 3 TeV sometimes beyond 500 GeV → extend applicability range and retune for CLIC
- Excellent jet energy resolution (3.5-4.5 %) for most jet energies up to the endcaps ($|\cos(\theta)| > 0.925$)
- $\bullet\,$ Conformal tracking is not yet fully efficient at 1500 GeV and work is ongoing $\to\,$ jet energy resolution is expected to become better

Jet energy resolution with and w/o Software compensation

- Software compensation improves jet energy resolution within the whole θ range in all energies
- Improvement reaches 10-25 % in barrel region
- Software compensation performs well even with high jet energies

< ∃ >

Performance of CLICdet and CLD detectors have been studied with PandoraPFA with isolated single particles and dijet events:

- Good single particle ID efficiency for both detectors (>95% from 20 GeV for charged particles)
- Excellent jet energy resolution (3.5-4.5 %) for most jet energies up to the endcaps

Overall calorimetry performance of CLD detector (FCCee) is similar to CLICdet

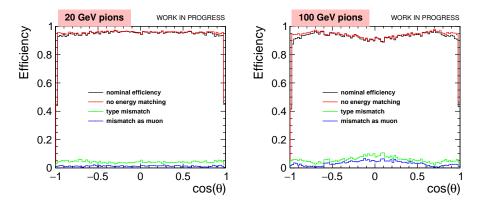
Software compensation:

- improves jet energy resolution by 10-25%
- provides reconstruction of total energy in dijet events with accuracy of 0.5%
- performs well even at high jet energies (tested up to 3 TeV centre-of-mass-energy)

Thank you for your attention!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

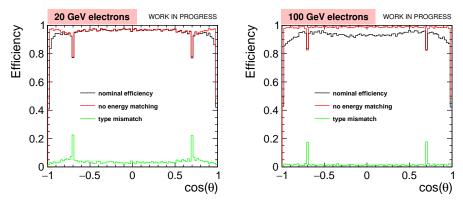
BACKUP


<ロ> <四> <四> <三</p>

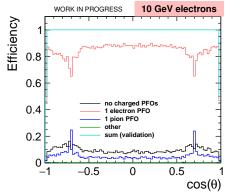
Overall dimensions of CLIC and FCC-ee detectors

	CLICdet		CLD
VTX Barrel	31-60 mm	\implies	17-59 mm
VTX Endcap	Spirals	\implies	Disks
Tracker radius	1486 mm	\implies	2100 mm
ECAL thickness	40 layers, 22 X ₀	\implies	40 layers, 22 X ₀
HCAL thickness	60 layers, 7.5 λ_I	\implies	44 layers, 5.5 λ_l
Yoke thickness	1989 mm	\implies	1521 mm
MDI (forward region)		\implies	< 150 mrad
Solenoid field	4 Tesla	\Rightarrow	2 Tesla

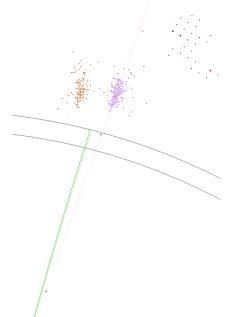
イロト イポト イヨト イヨト 二日


Pion ID efficiency and inefficiency as function of cos(θ)

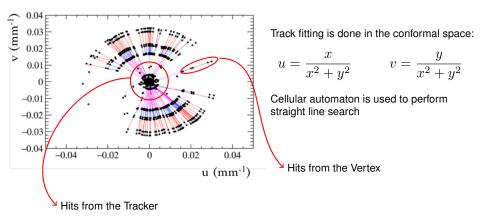
• High momentum pions more often are misreconstructed as muons in barrel


→

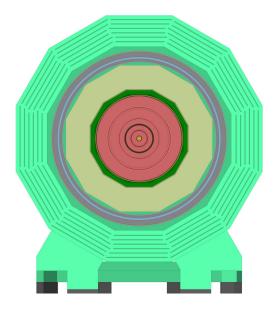
Electron ID efficiency and inefficiency as function of cos(θ)



 Inefficiency for high-momentum electrons can be recovered by better Bremsstrahlung recovery algorithm


Electron identification efficiency (Pandora track-cluster association algorithm)

- in 10-13% of events no charged PFO is reconstructed in the event
- track-cluster association algorithm fails to attach track to cluster (as shown on the right)
- in 3-6% of events fake "pion" is reconstructed
- in calorimeter transition region a small fraction of electrons is reconstructed as "pions"


Conformal Tracking

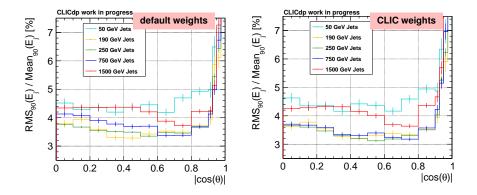
 Conformal tracking is used as the main track pattern recognition algorithm at CLIC

LCWS presentation about CLIC Conformal Tracking performance

CLD detector layout: x-y view

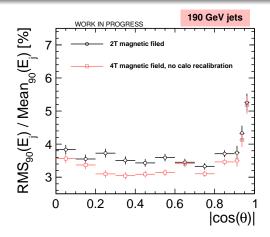
< □ > < □ > < □ > < □ > < □ >

크


CLD vs CLICdet overall dimensions

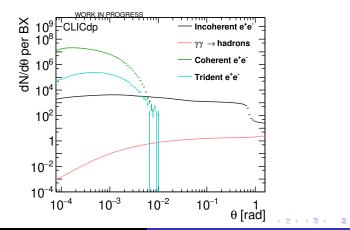
Concept	CLICdet	CLD
Vertex inner radius [mm]	31	17
Tracker technology	Silicon	Silicon
Tracker half length [m]	2.2	2.2
Tracker outer radius [m]	1.5	2.1
Inner tracker support cylinder radius [m]	0.575	0.675
ECAL absorber	W	w
ECAL X_0	22	22
ECAL barrel r _{min} [m]	1.5	2.15
ECAL barrel Δr [mm]	202	202
ECAL endcap z_{min} [m]	2.31	2.31
ECAL endcap Δz [mm]	202	202
HCAL absorber	Fe	Fe
HCAL λ_{I}	7.5	5.5
HCAL barrel r _{min} [m]	1.74	2.40
HCAL barrel Δr [mm]	1590	1166
HCAL endcap z_{\min} [m]	2.4	2.4
HCAL endcap Δz [mm]	1590	1166
Solenoid field [T]	4	2
Solenoid bore radius [m]	3.5	3.7
Solenoid length [m]	8.3	7.4
Overall height [m]	12.9	12.0
Overall length [m]	11.4	10.6

2


▶ < ≞ >

Jet energy resolution: CLIC specific SWC weights

- Comparable performance for jets up to 190 GeV
- Improvement of jet energy resolutions by around 10% for larger jet energies
- Achieve jet energy resolution between 3.1 % and 4.5 % with CLIC tuned weights


Jet energy resolution at CLD: 2T vs 4T

Increasing magnetic field of detector significantly improves jet energy resolution

There are three main sources of beam related backgrounds at CLIC:

- $e^+ e^-$ pairs which are predominantly produced with low transverse momenta p_T
- γγ → hadrons (from the interaction of real and virtual photons from the colliding beams) which result in pile-up of low energy particles with p_T < 5 GeV
- beam halo muons

