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Introduction

Compact Linear Collider (e−e+)

3 energy stages:
380 GeV, 1.5 TeV, 3 TeV

bunch trains are 156 ns long and
distance between trains is 20 ms
→ Power Pulsing of electronics

CLIC

Future Circular Collider (e−e+)

4 energy stages: Z , WW , HZ , t t̄

Bunch spacing: 20 - 8533 ns

FCC-ee

Both experiments demand
state-of-the-art detectors with:

low-material tracking system
precise calorimetery

CLICdet - proposed detector model
for CLIC with 4 Tesla magnetic field

CLD - detector model for FCC-ee
derived from CLICdet and optimized
for FCC-ee experimental conditions

Maximum possible detector magnetic
field at FCCee is 2 Tesla (to preserve
beam emittance) [GeV]s
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CLD and CLICdet detector models

CLD model

R [m]

Z [m]2.3 3.7

Full silicon tracking system - provides
>12 hits per track

Router = 1.5m - CLICdet
Router = 2.1m - CLD
increased material budget for 50% in VTX - CLD

Fine-grained ECAL and HCAL
optimised for particle flow
reconstruction

Superconducting solenoid is outside of
the calorimeters

4T field - CLICdet
2T field - CLD

Steel return yoke with muon chambers
2 m thickness - CLICdet
1.5 m thickness - CLD

Support structures, cables and
services are implemented in the
simulation models
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CLD and CLICdet detector models
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Calorimetry
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Si-W sampling calorimeter

cell size 5x5 mm2

40 layers (1.9 mm thick W plates)

Depth: 22 X0, 1 λI , 20 cm

Electromagnetic Calorimeter

Scintillator-steel sampling calorimeter

cell size 30x30 mm2

60 layers (CLICdet) / 44 layers (CLD)
(19 mm thick steel plates)

Depth: 7.5 λI (CLICdet) / 5.5 λI (CLD)

Hadronic Calorimeter
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Simulation and reconstruction software tools

Performance studies of CLICdet and CLD detector models were done with iLCSoft
software used by the CLIC and ILC community.

Detector geometry description and event simulation: DD4hep

Event Reconstruction: Marlin

Track Pattern recognition: ConformalTracking
Particle Flow Reconstruction: PandoraPFA

PandoraPFA is used both for jet and isolated particle ID studies

Geometry of detector models are implemented in lcgeo package:
CLIC o3 v14
FCCee o1 v03

Detector performances have been studied with full detector simulation
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https://github.com/iLCSoft
https://github.com/AIDASoft/DD4hep
https://github.com/iLCSoft/Marlin
https://github.com/PandoraPFA
https://github.com/iLCSoft/lcgeo
https://github.com/iLCSoft/lcgeo/tree/master/FCCee/compact/CLIC_o3_v14
https://github.com/iLCSoft/lcgeo/tree/master/FCCee/compact/FCCee_o1_v03


Momentum resolutions
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WORK IN PROGRESS WORK IN PROGRESSCLICdet CLD

Transverse momentum resolution for single muons with CLICdet and CLD detector models
as a function of θ for 1, 10 and 100 GeV energies

Overall comparable tracking performance of both detectors

Achieved momentum resolutions for 100 GeV muons at θ = 90◦:
3x10−5 GeV−1 - CLICdet
4x10−5 GeV−1 - CLD
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Particle ID efficiency

ESingle isolated particles

ELeptons in t t̄ events
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Single particle identification efficiency
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Efficiency = fraction of matched reconstructed particles out of the simulated MC particles:
reconstructed particle of the same type as simulated MC particle
angular matching: ∆θ < 1 mrad and ∆φ < 2 mrad
energy matching:
- charged particles: |ptruth

T − pPFO
T | < 5% ptruth

T

- photons: ∆E < 5× σ(ECal) ≈ 0.75×
√

E
Sample: single particles with flat
cos(θ) distribution and fixed energy

Muons PionsWORK IN PROGRESS WORK IN PROGRESS

>99% muon efficiency and 93-96% pion efficiency for E>10 GeV

Inefficiency at high energies with CLD is caused by a larger rate of pions being
mis-reconstructed as muons
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Single particle identification efficiency
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Photon merging procedure is used to recover inefficiency due to photon conversion and
electron Bremsstrahlung

Pandora electron ID parameters were retuned in order to recover hard electron Bremsstrahlung
(loosen maximum track-cluster distance requirement to recover events when a track is not associated to
either of EM clusters)

> 95% efficiency for >10 GeV photons and >20 GeV electrons

Further optimization of electron Bremsstrahlung recovery procedure may improve
electron efficiency (e.g. at lower energies)

Photons ElectronsWORK IN PROGRESS WORK IN PROGRESS
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Lepton identification efficienty in t t̄ events at CLIC
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Lepton ID efficiency in t t̄ events at 3 TeV at CLIC

Only direct leptons from W decays are considered

Requirement of angular matching within 1◦is imposed.

Muons are identified with more than 98% efficiency for all energies

Electrons are identified with 90-95% efficiency at energies of 20 GeV and higher

Presence of beam background doesn’t affect muon ID while electron ID decreases
by about 5%

Muons ElectronsWORK IN PROGRESS WORK IN PROGRESS
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Jet performance

ESoftware compensation

EJet Energy Resolution
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Software Compensation

Software compensation:

Electromagnetic component of shower typically
denser

Software compensation reweights hits in HCAL
depending on the hit energy density

Weights are calculated by formula:
ω(ρ) =p1exp(p2ρ)+p3

where each parameter is an energy dependent
→ 9 different parameters are used in total

Software compensation is an energy “regularisation” techniques (JINST 7 (2012) P09017)

Idea is to correct with software for (on average) larger response of hadron showers
with large electromagnetic component → improves energy measurement of cluster
energies

Software compensation technique (developed by CALICE) is implemented in
PandoraPFA now

Detector specific software compensation
weights were obtained for CLICdet and CLD

EPJC 77 (2017) 698
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http://iopscience.iop.org/1748-0221/7/09/P09017


Hadron response with Software Compensation
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CLICdp work in progress

Software compensation weights derived using several fully simulated neutron and
K0L single particle datasets

Mean and resolution after software compensation largely improved

Software compensation corrects for nonlinear response of hadrons on the fly
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Total reconstructed energy in dijet events with Software Compensation

Dijet events of a Z-like particle decaying into pair of light quarks (u, d, s) at several
centre-of-mass energies
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CLICdp WORK IN PROGRESS

Ratio of total reconstructed energy to total simulated energy (excluding neutrinos)

Software compensation provides reconstruction of total energy within 0.5%
accuracy in light-quark dijet sample.
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Jet energy resolution with dijet events

Dijet events of a Z-like particle decaying into pair of light quarks (u, d, s) at several
centre-of-mass energies
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WORK IN PROGRESS WORK IN PROGRESS45.5 GeV jets 190 GeV jets

Comparable resolution for both detectors
Jet energy resolution in barrel region:

45.5 GeV jets: 4-5 %
190 GeV jets: 3-4 %

Jet energy (Ej ) is measured as a half of total
energy (Ejj ) of Z→ qq̄ (q=u,d,s) di-jet event
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Jet energy resolution at CLIC at high energies
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CLICdp WORK IN PROGRESS

Default Software compensation are tuned for hadrons up to 100 GeV (optimized for
ILD detector at ILC), at CLIC expect to reach higher hadron energies, at 3 TeV
sometimes beyond 500 GeV → extend applicability range and retune for CLIC

Excellent jet energy resolution (3.5-4.5 %) for most jet energies up to the endcaps
(|cos(θ)| > 0.925)

Conformal tracking is not yet fully efficient at 1500 GeV and work is ongoing → jet
energy resolution is expected to become better
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Jet energy resolution with and w/o Software compensation
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Software compensation improves jet energy resolution within the whole θ range in
all energies

Improvement reaches 10-25 % in barrel region

Software compensation performs well even with high jet energies
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Summary

Performance of CLICdet and CLD detectors have been studied with PandoraPFA with
isolated single particles and dijet events:

Good single particle ID efficiency for both detectors
(>95% from 20 GeV for charged particles)

Excellent jet energy resolution (3.5-4.5 %) for most jet energies up to the endcaps

Overall calorimetry performance of CLD detector (FCCee) is similar to CLICdet

Software compensation:

improves jet energy resolution by 10-25%

provides reconstruction of total energy in dijet events with accuracy of 0.5%

performs well even at high jet energies (tested up to 3 TeV
centre-of-mass-energy)

Thank you for your attention!
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BACKUP
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CLD vs CLICdet dimensions

CLICdet CLD

VTX Barrel 31-60 mm =⇒ 17-59 mm

VTX Endcap Spirals =⇒ Disks

Tracker radius 1486 mm =⇒ 2100 mm

ECAL thickness 40 layers, 22 X0 =⇒ 40 layers, 22 X0

HCAL thickness 60 layers, 7.5 λI =⇒ 44 layers, 5.5 λI

Yoke thickness 1989 mm =⇒ 1521 mm

MDI (forward region) =⇒ < 150 mrad

Solenoid field 4 Tesla =⇒ 2 Tesla

Overall dimensions of CLIC and FCC-ee detectors
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Pion identification efficiency
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Pion ID efficiency and inefficiency as function of cos(θ)

High momentum pions more often are misreconstructed as muons in barrel

20 GeV pions 100 GeV pionsWORK IN PROGRESS WORK IN PROGRESS
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Electron identification efficiency
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Inefficiency for high-momentum electrons can be recovered by better
Bremsstrahlung recovery algorithm

20 GeV electrons 100 GeV electronsWORK IN PROGRESS WORK IN PROGRESS
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Electron identification efficiency (Pandora track-cluster association algorithm)
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in 10-13% of events no charged PFO is
reconstructed in the event

track-cluster association algorithm fails to
attach track to cluster (as shown on the right)

in 3-6% of events fake “pion” is reconstructed

in calorimeter transition region a small fraction
of electrons is reconstructed as “pions”
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Conformal Tracking

Track fitting is done in the conformal space:

Cellular automaton is used to perform
straight line search

Conformal tracking is used as the main track pattern recognition algorithm at
CLIC

LCWS presentation about CLIC Conformal Tracking performance

Hits from the Vertex

Hits from the Tracker
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https://agenda.linearcollider.org/event/7645/contributions/40123/attachments/32387/49200/Leogrande_LCWS2017.pdf


CLD detector layout: x-y view
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CLD vs CLICdet overall dimensions
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Jet energy resolution: CLIC specific SWC weights
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CLICdp work in progress
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CLICdp work in progress

default weights CLIC weights
CLICdp work in progress CLICdp work in progress

Comparable performance for jets up to 190 GeV

Improvement of jet energy resolutions by around 10% for larger jet energies

Achieve jet energy resolution between 3.1 % and 4.5 % with CLIC tuned weights
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Jet energy resolution at CLD: 2T vs 4T
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WORK IN PROGRESS
190 GeV jets

Increasing magnetic field of detector significantly improves jet energy resolution
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Beam-Induced Backgrounds at CLIC

There are three main sources of beam related backgrounds at CLIC:

e+ e− pairs which are predominantly produced with low transverse momenta pT

γγ → hadrons (from the interaction of real and virtual photons from the colliding
beams) which result in pile-up of low energy particles with pT < 5 GeV

beam halo muons
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WORK IN PROGRESS
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