Multifunctional scintillation materials of the garnet structure for nonhomogeneous detecting cells of electromagnetic calorimeters to operate in a harsh irradiation environment

V.Dormenev¹, K.-T.Brinkmann¹, G.Dosovitskiy², A.Fedorov³, M.Korjik^{2,3}, D.Kozlov², V.Mechinsky², R.W.Novotny¹, H.-G.Zaunick¹

1-2nd Physic Institute, Justus Liebig University, Giessen, Germany
2-National Research Center "Kurchatov Institute-IREA", Moscow, Russia
3- Research Institute for Nuclear Problems, Minsk, Belarus

Bundesministerium für Bildung und Forschung

Materials of interest : radiation hard oxide scintillation materials

Future detector systems for accelerating facilities based on scintillator materials for high energy physics will operate in intensive radiation fields.

It requires a high resistance level as to electromagnetic as well as to hadronic parts of the radiation environment.

Material	ρ, g/cm ³	Z _{eff} /photo_absorp. coeff., 511 keV,cm ⁻¹ / X ₀ ,cm	Yield, ph/MeV	$\tau_{sc},$ ns	λ _{max} , nm
Gd ₃ Al ₂ Ga ₃ O ₁₂ :Ce (GAGG)	6.67	50.6/0.12/1.61	46,000	80/ 800	520
(Gd-Y) ₃ (Al-Ga) ₅ O ₁₂ :Ce	5.8	45/0.08/1.94	60,000	100/600	560
Y ₃ Al ₅ O ₁₂ :Ce (YAG)	4.55	32.6/0.017/3.28	11 000	70	550
YAlO ₃ :Ce (YAP)	5.35	32/0.019/2.2	16 200	30	347
(Y _{0.3} -Lu _{0.7}) AlO ₃ :Ce (LuYAG)	7.1	60/0.21/1.3	13 000	18/80/450	375
Lu ₂ SiO ₅ :Ce (LSO)	7.4	66/0.28/1.1	27 000	40	420
(Lu-Y) ₂ SiO ₅ :Ce (LYSO)	7	60/0.20/1.35	30 000	37	420

Yield per MIP for different materials

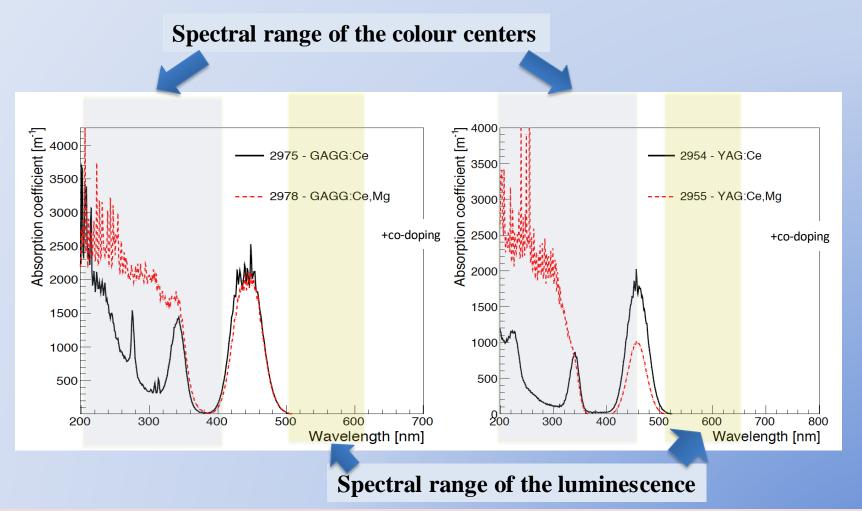
Ionization losses per 1 mm of the media for 10 GeV e⁻ and 50 Gev π^-

Material	Density ρ , g/cm ³	dE/dx @ e ⁻ , MeV/mm	dE/dx @ π ⁻ , MeV/mm
Plastic scintillator	1.032	0.154	0.154
(vinyltoluene based)			
$Y_{3}Al_{5}O_{12}$ (YAG)	4.55	0.591	0.589
Y ₃ (Al _{0.5} -Ga _{0.5}) ₅ O ₁₂	4.80	0.614	0.612
(YAGG)			
YAlO ₃ (YAP)	5.50	0.708	0.705
Gd ₃ Al ₂ Ga ₃ O ₁₂ (GAGG)	6.63	0.808	0.804
Lu ₂ SiO ₅ (LSO)	7.4	0.879	0.873
(Lu _{0.8} -Y _{0.2}) ₂ SiO ₅ (LYSO)	7.2	0.85	0.85

Light output per MIP (10 GeV e⁻) per 1 mm in different scintillation materials

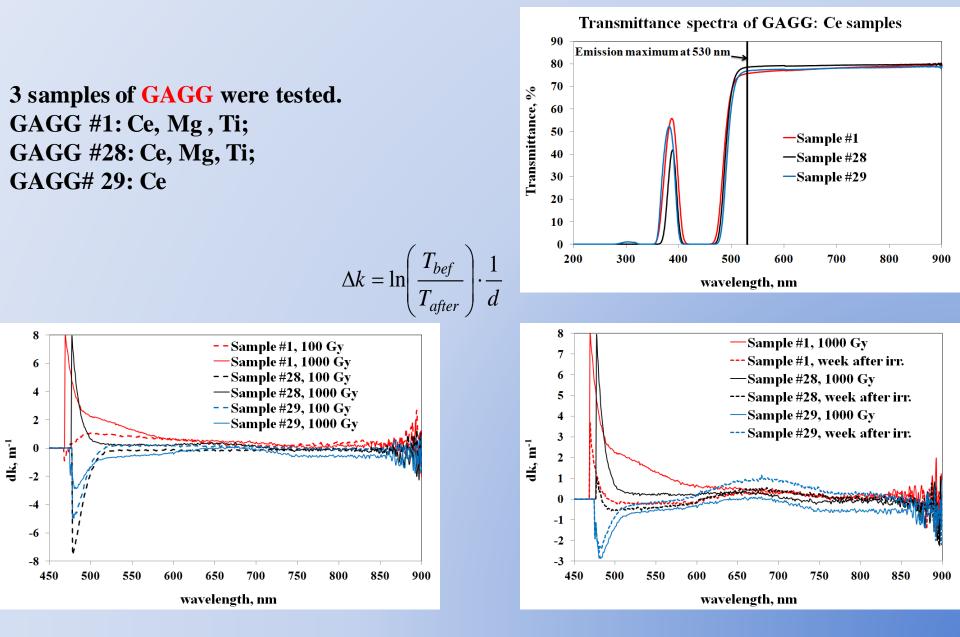
Material	LY, ph/MeV	dE/dx @ e ⁻ , MeV/mm	Yield, ph
			per 1 mm per MIP
Plastic scintillator	10000	0.154	1540
(vinyltoluene based)			
$Y_{3}Al_{5}O_{12}$ (YAG)	11000	0.591	6500
Y ₃ (Al _{0.5} -Ga _{0.5}) ₅ O ₁₂	30000	0.614	18420
(YAGG)			
YAlO ₃ (YAP)	16000	0.708	11350
Gd ₃ Al ₂ Ga ₃ O ₁₂ (GAGG)	46000	0.808	37200
Lu ₂ SiO ₅ (LSO)	27000	0.879	23700
(Lu _{0.8} -Y _{0.2}) ₂ SiO ₅ (LYSO)	30000	0.85	25500

Materials of interest

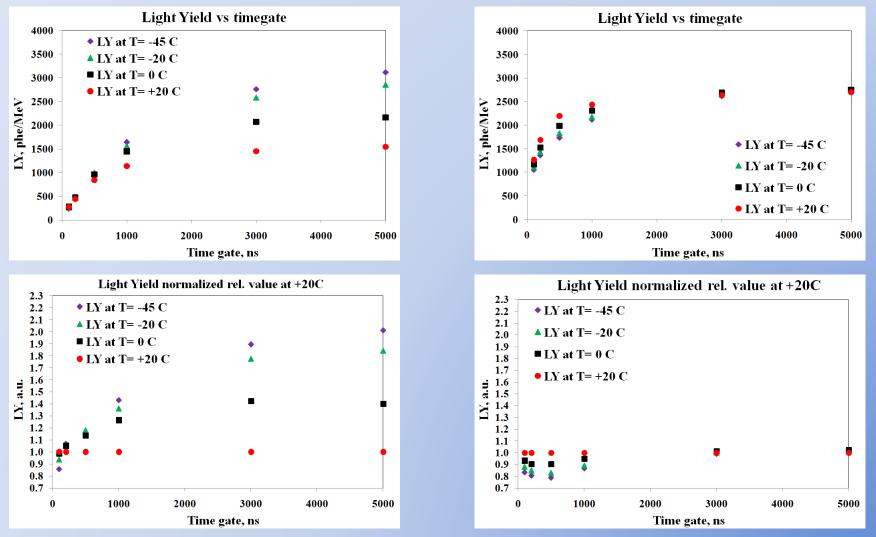

Material	LY, ph/MeV	dE/dx @ e ⁻ , MeV/mm	Yield, ph per 1 mm per MIP	Radiation hardness to protons
Plastic scintillator	10000	0.154	1540	-
(vinyltoluene based)				
$Y_3Al_5O_{12}$ (YAG)	11000	0.591	6500	+
Y(Ga-Al) ₅ O ₁₂ (YAGG)	30000	0.614	18420	-
YAlO ₃ (YAP)	16000	0.708	11350	-
Gd ₃ Al ₂ Ga ₃ O ₁₂ (GAGG)	46000	0.808	<u>37200</u>	+
Lu ₂ SiO ₅ (LSO)	27000	0.879	23700	+
(Lu _{0.8} -Y _{0.2}) ₂ SiO ₅ (LYSO)	30000	0.85	25500	+

Garnets are more radiation hard than perovskites and oxyorthosilicates

GAGG shows the best yield per MIP


GAGG also shows 170 ps coincidence time resolution with ²²Na which is close to one of LSO or LYSO

Why are garnets irradiation tolerant?


Induced absorption of GAGG: Ce and YAG: Ce, also co-doped crystals are out of luminescence range.

GAGG : Ce, Mg, Ti. Induced absorption after irradiation with gamma-quanta (⁶⁰Co)

Lighy Yield of garnets vs operational temperature. YAG: Ce + Mg

YAG: Ce

Light Yield vs integration time was measured (Hamamatsu PMT XP 2059, ²⁴¹Am)

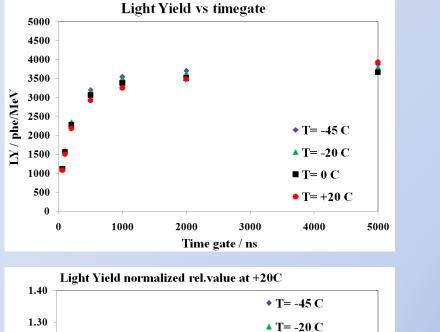
CALOR2018, 24 May 2018

Lighy Yield of garnets vs operational temperature.

GAGG: Ce

1.20

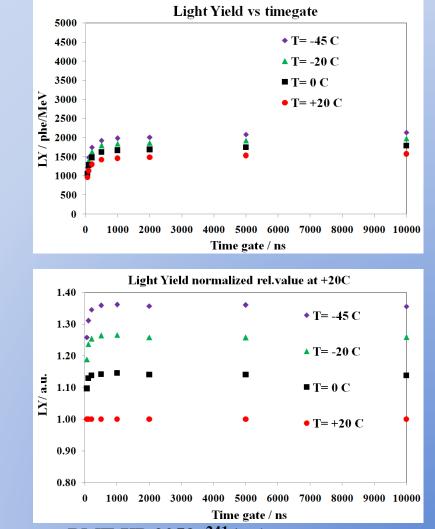
1.10


1.00

0.90

0.80

0


LY, a.u.

1000 2000 3000 4000 5000 6000

Time gate, ns

GAGG:Ce + Mg, Ti

Light Yield vs integration time was measured (Hamamatsu PMT XP 2059, ²⁴¹Am)

7000 8000 9000 10000

 \blacksquare T= 0 C

• T= +20 C

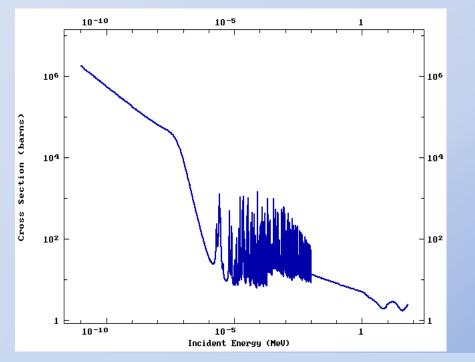
CALOR2018, 24 May 2018

GAGG-gadolinium aluminum gallium garnet Gd₃Al₂Ga₃O₁₂

 $\begin{array}{l} n+{}^{155}Gd \rightarrow {}^{156}Gd + \gamma \\ (\ a \ set \ of \ soft \ gammas \ with \ total \\ energy \ {\sim}8.5 \ MeV) \end{array}$

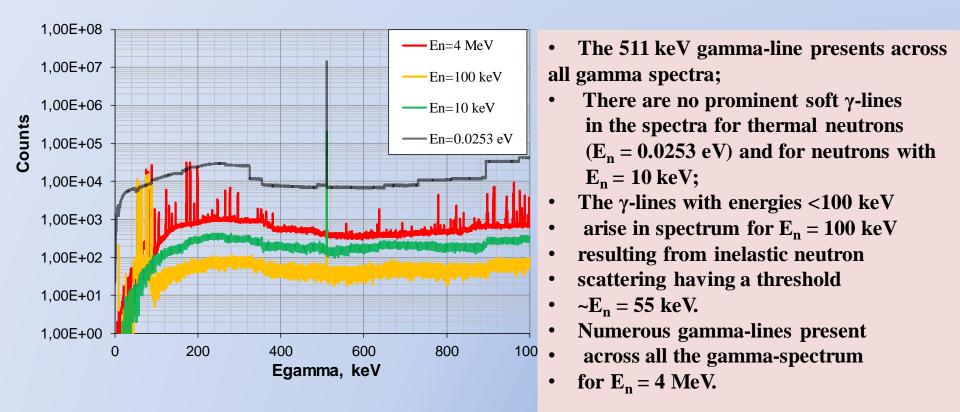
 $\begin{array}{l} n+{}^{157}Gd \rightarrow {}^{158}Gd + \gamma \\ (\ a \ set \ of \ soft \ gammas \ with \ total \\ energy \ ~8 \ MeV) \end{array}$

GAGG is the aluminum gallium garnet doped with Ce, Mg, Ti is perfect scintillation material designed to overcome drawbacks of Ce solely doped and Mg co-doped crystals.

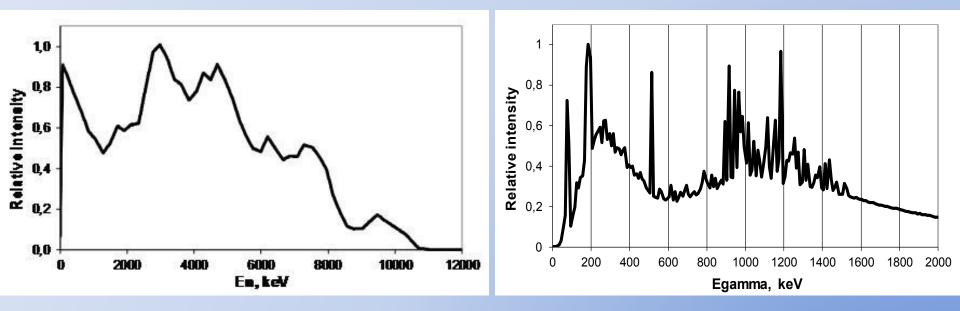

GAGG has high energy resolution, perfect time resolution (CTR)

fast scintillation kinetics, high effective charge Z_{eff} of compound, perfect radiation hardness to gamma and hadron irradiation.

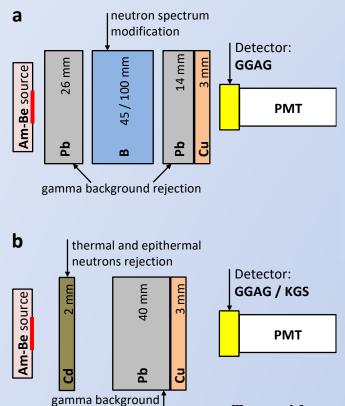
Density, g/cm ³	Z _{eff} /photo absorp.coeff., 511 keV,cm ⁻¹	Emission maximum, nm	Light yield, ph/MeV	Decay kinetics, ns(%)	Energy resolution, %	Time resolution (CTR), ps
6.68	51/0.12	520	38000(RT) 46000(-45°C)	30 (25%), 80 (60%), 100-200 ns (15%)	6.2%(511keV,-20°C) SiPM 3.6%(1270keV, -20°C) SiPM	170 (-20 to 20°C)


Gd isotopes natural mixture is sensitive to neutrons

Neutron total cross sections of natural mixture of Gd isotopes Nuclear Data File (ENDF), <u>https://www-nds.iaea.org/exfor/endf.htm</u>


- Characteristic for them broad zone of resonances increases the neutron absorption efficiency for neutron energies from 1.0 eV up to 10 keV;
- Starting from ~ 55 keV threshold of the neutron energy, the process of the neutron inelastic scattering is accompanied by the gamma-quanta emission, forming multiple soft lines in the resulting gamma-quanta spectrum

Production of γ **-quanta in Gd(n,** γ)


Spectra of the individual energies of the emitted gamma quanta in metallic gadolinium with 2 mm thickness, irradiated with monochromatic neutrons, simulated with GEANT4

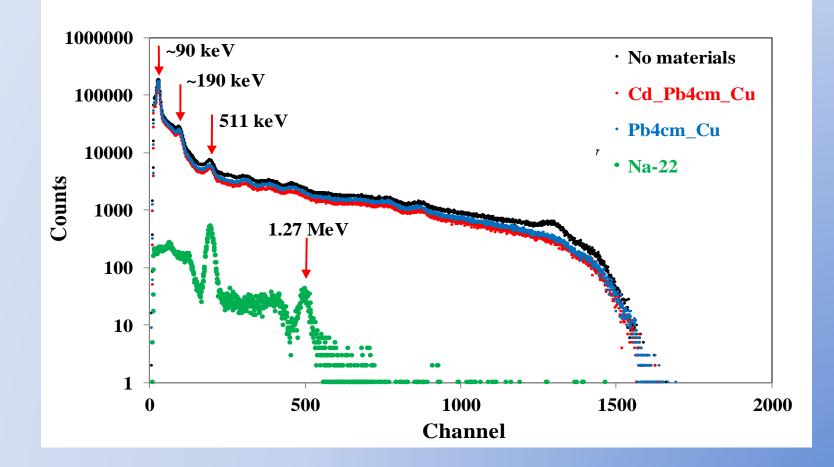
GEANT4 modeled spectrum of γ-quanta born in 2 mm Gd metal plate, irradiated with neutrons from Am-Be source

Spectrum of neutron energies from Am-Be neutron source, in accordance with ISO 8529-1:2001(E)

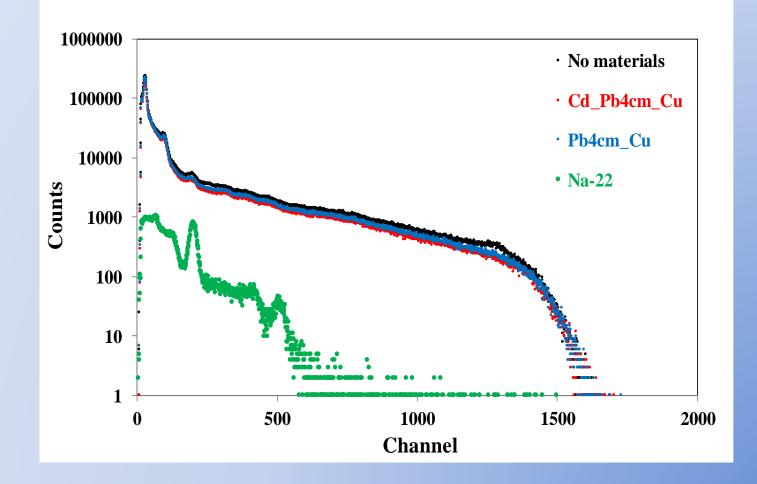
Layout of the measurement scheme

rejection

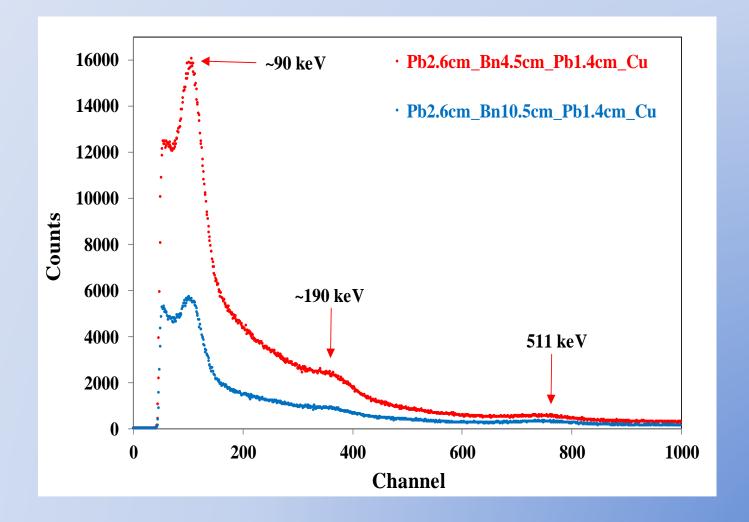
GAGG:Ce samples with following dimensions were tested:
1) 15×18×7 mm size, surface area faced to neutron source 2.70 cm², volume 1.89 cm³;
2) Ø30×2 mm, surface area 7.01 cm², volume 1.41 cm³


Tests with neutrons of an Am-Be source (<En> = 4.2 MeV, En max = 11 MeV) have been performed. 241Am source activity is 220 GBq,

with estimated neutron yield of $\geq 1.3 \times 10^7$ neutron/s.


Each sample was wrapped in multiple layers of Teflon® tape and attached to a Hamamatsu R2059 PMT.

The optical connection between samples and the PMT was performed with "Baysilone® M 300.000" optical grease.


The γ-spectra measured with GAGG 15×18×7 mm sample irradiated by neutrons from Am-Be source.

The γ-spectra measured with GAGG and Ø30×2 mm³ sample irradiated by neutrons from Am-Be source

Spectra of Am-Be source measured with GAGG 15×18×7 mm at different thicknesses of boron acid absorber

Summary

• Our modeling and experimental evaluations have shown that gamma-lines acquired with GAGG scintillation detector under neutron irradiation are located in the energy range up to 4 MeV. Main gamma lines are located in the energy range shorter than 0.6 MeV.

• Spectrum of MIPs with GAGG crystal plate of the thickness 2 mm already will have signal near 1.5 MeV, so overlapping with gamma quanta, generated with neutrons will be small.

• Gamma-quanta, generated by neutrons in GAGG will appear under detector threshold at the registration of high energy particles while "shashlyk" or "spaghetti" type detectors will be used.

• GAGG has a good potential to be applied for nonhomogeneous detecting cells of electromagnetic calorimeters to operate in a harsh irradiation environment