

An Ensemble of Neural Networks for Online Electron Filtering at the ATLAS Experiment CALOR 2018, Eugene OR

Outline

- o Basics:
 - o ATLAS Trigger System;
 - o HLT Trigger Optimization;
 - o Ring-shaped Calorimetry Extraction;
- Neural Ringer Operation in 2017;
 - o Trigger Efficiency after switching to ringer;
- o Impact studies;
- o Conclusion.

ATLAS Trigger System

- crossing rate of ~40 MHz;
- Around 20% allocated to e/γ ;
- In Run 2 the peak lumi is 2X larger than Run 1;
- The trigger system was designed to record only ~1KHz;
 - Need to keep the rates under control in high luminosity scenario;
 - o Upgrades were implemented during Run

HLT Trigger Optimization

Fast Calo Intervention:

- Use a new event calorimetry description (concentric rings);
- This information will be used to fed a multivariate discriminator;
 - o An ensemble of neural networks;
- High rejection power when compared to the old paradigm (cut-based selection);
 - Fake rate reduction before the track reconstruction;
- Pileup correction to keep up the efficiency;
- Only when triggering electrons above 15 GeV.

Electron Identification (Fast step)

Variables and Position

	Strips	2nd	Had.
Ratios	f_1 , $f_{\sf side}$	R_{η} *, R_{ϕ}	$R_{Had.}*$
Widths	$W_{s,3}$, $W_{s,tot}$	$w_{\eta,2}^*$	-
Shapes	ΔE , E_{ratio}	* Used in	PhotonLoose.

Energy Ratios

Non-diffractive minimum bias MC

Data 2010 (\s = 7 TeV) Non-diffractive minimum bias MC

ATLAS Preliminary

ATLAS Preliminary

Ringer Shape:

- Concentric rings are built for all layers;
- o Compact cell information used to describe the event throughout of the calorimeter

L1

Fast Calorimeter Reconstruction

Efficient

Selection

Fast Track Reconstruction

Fast Electron Reconstruction

Efficient Electron
Pre-selection

Ringer Reconstruction

- Ringer reconstruction setup in the Fast Calorimeter Reconstruction:
 - Built from all calorimeter layers, centered in a window from the cluster barycenter;
 - First ring in each layer is the cell closest to cluster barycenter;
 - The next ring is the collection of cells around the previous one; ring value is the sum E_T of all cells composing the ring;
 - This process reduces the amount of information (w.r.t. using all cells), but keeps the physics interpretation (typical EM object shower shape);

Total number of Rings per layer (covering 0.4 x 0.4 region in $\eta \times \varphi$)								
PS	EM1	EM2	EM3	HAD1	HAD2	HAD3		
8	64	8	8	4	4	4		

trigger cha

inal 2017 Electron

Ringer Ensemble

- As the same way that the standard shower shapes quantities are subject to distortions according to the particle interaction position and energy in ATLAS, as well are the rings;
- To deal with these distortions, as chosen from the offline analysis, the ringer process online data through an ensemble that is defined in bins of eta and energy;
 - Specific models for defined regions to minimize distortions;

- The ensemble is build from single-layer MLP neural networks;
- Ensemble operation is set to reach high detection efficiency as defined by the HLT Precision step (Likelihood);
 - Best trained models are those that optimize the fake rate reduction.

L1

The Tag And Probe Method

- Need a clean unbiased offline electron sample for efficiency measurement;
 - Use Z → ee / J/ ψ → ee / W → ev characteristic decays;
- Apply strict selection criteria to one of the decay electrons (tag);
 - Usually apply a tight trigger;
 - o Isolation;
- The second decay electron, the probe is identified with the tag by m_{ee} within the mass window;
 - Probe electrons are used for the efficiency measurement;
 - The probe electron is a trigger unbiased.

Apply trigger tight

Trigger Efficiency

- ne tag & probe method;

 Same signal efficiency w.r.t the old paradigm (cut-based at the fast calo step);

 Primary
 - reduction: 200 ms to ~100 ms;
 - High rejection power (~2-3X);
 - o Electron + photon slice: ~1/4 latency reduction;

Full 2017 period

- Kept operating backup trigger sequence with the previously cut-based selection to assess;
 - Efficiencies changes;
 - Offline impact.

- We are also interested in assessing whether:
 - o Is there a bias in the collected probe samples when we change single-lepton triggers (the tag trigger)?
 - e.g. would the offline standard quantities (shower shapes) be biased by the ringer chains?
- To evaluate this, we apply statistical tests comparing histograms built with the quantity profiles of the probes distribution:
 - Comparing the shape of the histograms;
 - One histogram is built with the monitoring chain (previous paradigm) applied to the tag;
 - Other histogram has tag passing equivalent ringer chain;

noringer

Standard T&P procedure with tag passing single_lepton trigger list e28_lhtight_nod0(_noringer)_ivarloos

ringer

Standard T&P procedure with tag passing single_lepton trigger list e28_lhtight_nod0(_ringer)_ivarloose

Check for distortions (currently using histograms)

This process is applied for all standard quantities and phase space regions.

- As the number of T&P pairs in each phase space bin are not the same to small differences in the chains operations points:
 - The total histogram entries are not the same
 - we remove samples at random in the histogram with higher counts;
 - Force both histograms to have the same number of counts;

- To reduce the number of bins and profit from Gaussian/Poissonian errors approximation:
 - o Adaptive bin grid is calculated in the reference hist;
 - The edges are then propagated to rebin ringer chain hist.

 $E_{ratio} = (E_{max1}^1 - E_{max2}^1)/(E_{max1}^1 + E_{max2}^1)$

- To verify any change of shape after the introduction of the ringer in the trigger sequence:
 - o We assess the Δ (counts)/ σ (~chi residuals in black markers) where the ringer histogram is used as a model to the baseline histogram (experimental outcome);

$$E_{ratio} = (E_{max1}^1 - E_{max2}^1)/(E_{max1}^1 + E_{max2}^1)$$

- To verify any change of shape after the introduction of the ringer in the trigger sequence:
 - o We assess the Δ (counts)/ σ (~chi residuals in black markers) where the ringer histogram is used as a model to the baseline histogram (experimental outcome);

- No clear pattern can be observed in the residuals;
 - They seem to oscillate freely around zero;
- No single residual can be found above 1 sigma deviation for all phase space regions and quantities;

Conclusions

- Ring-shaped Calorimetry: introduced new concept for characterization of the shower development in the ATLAS Trigger System;
 - A complete shower description of the event throughout of the calorimeter;
 - o Compact information from the cells.
- o Updated at the fast calo step to use an ensemble of neural networks based on calorimetry information;
 - o Electron trigger kept operating with similar electron efficiency with large improvement in the processing requirements:
 - o 200ms \rightarrow 100ms, 2-3x reduction in fake rate;
 - Residuals are small and oscillate freely around zero which suggests absence of bias

Thanks a lot for all support!!!

Backup

Ringer Tuning Approach

o Data Extraction:

- Shapes extracted from the FastCalo rings;
- o Event selection using TrigEgammaAnalysis:
 - Signal: T&P selection + Offline LH Veryloose on probes;
 - o Background: Veto Probes;
- o Tuning networks binning configuration:
 - $E_T = [15, 20, 30, 40, 50, \infty[$ and $\mathbf{\eta} = [0, 0.8, 1.35, 1.52, 2.37, 2.5], 25 bins;$
- o Threshold binning configuration:
 - $E_T = [15, 20, 30, 40, 50, \infty[$ and $\mathbf{\eta} = [0, 0.8, 1.35, 1.52, 2,37 2.5], 25 thresholds; (This can be latter adapted);$

o Model Extraction:

Standard full-connected 1 hidden layer MLP (as usual).