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Basics:
o ATLAS Trigger System;
o HLT Trigger Optimization;
o Ring-shaped Calorimetry Extraction;

Neural Ringer Operation in 2017;

o Trigger Efficiency after switching to ringer;
Impact studies;
Conclusion.



30>T[MHz]>40 T<100kHz
~70 TB/s T<85kHz (2017)
Reduces event rate to 1 kHz from beam

crossing rate of ~40 MHz;

Around 20% allocated to e/y ;

In Run 2 the peak lumi is 2X larger than Run 1;

The trigger system was designed to record
only ~1KHz;
o Need to keep the rates under control in
high luminosity scenario;
o Upgrades were implemented during Run
2
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o Fast Calo Intervention: T 1
o Use a new event calorimetry |
description (concentric rings); |

o This information will be used to fed a :
multivariate discriminator; |

o An ensemble of neural networks: |

o High rejection power when compared :

to the old paradigm (cut-based |
selection); |

o Fake rate reduction before the :
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track reconstruction;
o Pileup correction to keep up the
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New

o Ringer Shape:
o Concentric rings are built for all
layers;
o Compact cell information used
to describe the event throughout
of the calorimeter




Ringer Reconstruction

e
o Ringer reconstruction setup in the Fast @0
. . Efficient
Calorimeter Reconstruction: (\8}' R

o Built from all calorimeter layers, centered & e

. . @ Fast Electron Reconstruction

in a window from the cluster barycenter; <& p—

. . . . Pre-selection

o Firstring in each layer is the cell closest to

cluster barycenter;

o The nextring is the collection of cells
around the previous one; ring value is the
sum E; of all cells composing the ring;

o This process reduces the amount of
information (w.r.t. using all cells), but

keeps the physics interpretation (typical
EM object shower shape); CJe\\s

Total number of Rings per layer
(covering 0.4 x 0.4 region in n x ¢)
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Ringer Ensemble

o As the same way that the standard shower shapes quantities are subject to
distortions according to the particle interaction position and energy in ATLAS,

as well are the rings;

o To deal with these distortions, as chosen from the offline analysis, the ringer
process online data through an ensemble that is defined in bins of eta and

Rings

energy;

o Specific models for defined regions to minimize distortions;
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o The ensemble is build

from single-layer MLP
neural networks:

Ensemble operation is set
to reach high detection
efficiency as defined by
the HLT Precision step

(Likelihood);
o Best trained models
are those that

optimize the fake
rate reduction.
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The Tag And Probe Method

o Need a clean unbiased offline electron . .
sample for efficiency measurement; Apply trigger tight
o UseZ—ee/J/y—ee/W—-ev

oL tag
characteristic decays;

o Apply strict selection criteria to one of
the decay electrons (tag);
o Usually apply a tight trigger;
o lIsolation;

o The second decay electron, the probe is
identified with the tag by m, within the
mass window;

o Probe electrons are used for the
efficiency measurement;

o The probe electron is a trigger
unbiased.

Probe



Trigger Efficiency Full 2017 period
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Same si | efficie r.tthe old | - v
o Same signal efficiency w.r . W

paradigm (cut-based at the fast » E
calo step); 0.6 " -
o Primary chain latency os o Without Ringer
reduction: 200 ms to ~100 ms; With Ringer

o High rejection power (~2-3X); o . E

o Electron + photon slice: ~1/4 "6 "20™" 30 40 50 60
. Offline isolated electron E; [GeV]
latency reduction;

o Kept operating backup trigger sequence with the previously cut-based
selection to assess;
o Efficiencies changes;
o Offline impact.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EgammaTriggerPublicResults#Performance of Ringer in Trigger 10



https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EgammaTriggerPublicResults

Offline Impact

o We are also interested in assessing
whether:

o Isthere a bias in the collected
probe samples when we
change single-lepton triggers
(the tag trigger)?

o e.g.would the offline standard
quantities (shower shapes) be
biased by the ringer chains?

o To evaluate this, we apply statistical
tests comparing histograms built
with the quantity profiles of the
probes distribution:

o Comparing the shape of the
histograms;

o One histogram is built with the
monitoring chain (previous
paradigm) applied to the tag;

o Other histogram has tag
passing equivalent ringer
chain;
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Check for distortions

(currently using histograms)
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This process is applied for all standard
quantities and phase space regions.
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Offline Impact

o As the number of T&P pairs in each phase space bin are not the same to small

differences in the chains operations points:

o The total histogram entries are not the same
o we remove samples at random in the histogram with higher counts;
o Force both histograms to have the same number of counts;
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o To reduce the number of bins and profit from Gaussian/Poissonian errors

approximation:

o Adaptive bin grid is calculated in the reference hist;
o The edges are then propagated to rebin ringer chain hist.
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Ofﬂine ImpaCt Eratio = (E max1 ~ E1max2)/(E1max1 + E1max2)
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Ofﬂine ImpaCt Eratio = (E max1 ~ E1max2)/(E1max1 + E1max2)
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o No clear pattern can be observed in the residuals; B atio

o They seem to oscillate freely around zero;
o No single residual can be found above 1 sigma deviation for
all phase space regions and quantities;

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EgammaTriggerPublicResults#Performance of Ringer in Trigger 14
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Conclusions

o Ring-shaped Calorimetry: introduced new concept for characterization
of the shower development in the ATLAS Trigger System;

@)

@)

A complete shower description of the event throughout of the

calorimeter;
Compact information from the cells.

o Updated at the fast calo step to use an ensemble of neural networks
based on calorimetry information;

@)

Electron trigger kept operating with similar electron efficiency with
large improvement in the processing requirements:

200ms — 100ms, 2-3x reduction in fake rate;

Residuals are small and oscillate freely around zero which suggests
absence of bias
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Ringer Tuning Approach

o Data Extraction:
o Shapes extracted from the FastCalo rings;
o Event selection using TrigEkgammaAnalysis:
o Signal: T&P selection + Offline LH Veryloose on probes;
o Background: Veto Probes;
o Tuning networks binning configuration:
o E;=1[15, 20, 30, 40, 50, [ and n = [0, 0.8, 1.35, 1.52, 2.37, 2.5], 25
bins;
o Threshold binning configuration:
o E;=1[15, 20, 30, 40, 50, [ and n = [0, 0.8, 1.35, 1.52, 2,37 2.5], 25
thresholds; (This can be latter adapted);
o Model Extraction:
o Standard full-connected 1 hidden layer MLP (as usual).
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