Performance of the ALICE Zero Degree Calorimeters
and upgrade strategy

P. Cortese for the ALICE Collaboration

R I- IC E UNIVERSITA DFL PIEMONTE ORIENTALE

18! International Conference on Calorimetry in Particle Physics
21-25 May 2015, Eugene, Oregon




ALICE: the dedicated heavy-ion experiment at LHC
ALICE

Side A ————

ZDC
12.5m from 1.,

ZDC
12.5m from |.p

~—--

e Central barrel (|n| < 1) in a solenoidal field with excellent tracking and PID capabilities
Study of hadronic signals, photons and dielectrons

e Forward muon spectrometer (2.5 < 1 < 4): study quarkonia and heavy flavour decays
e Forward detectors (|n| > 3) to characterize the collision: timing, vertex, centrality,
event plane. FMD,T0,V0 and ZDC (|n| > 8.7 at ~ 112.5m from interaction point)
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The ALICE Zero Degree Calorimeters: ZEM
ALICE

Placed at 0° w.r.t LHC axis, ~112.5 m from IP on both sides (A and C)

Based on the detection of Cherenkov light produced in quartz fibers
» 2 neutron calorimeters (ZNA and ZNC) placed between the beam pipes |n| > 8.7
» 2 proton calorimeters (ZPA and ZPC) close to the outgoing beam pipe

» 2 small electromagnetic calorimeters (ZEM1, ZEM2) placed at ~7.5 m from the IP,
at £8 cm from LHC axis, only mounted on A side covering 4.8 <n < 5.7

Sketch view of A side
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The neutron Zero Degree Calorimeter

Severe space contraints due to the
limited space available between
the LHC beam pipes

> W-alloy (p =17.6g/cm®)
» 44 grooved slabs, 1.6 mm thick,

stacked to form a parallelepiped
7.2.7.2-100cmq.

» 1936 quartz fibers (g = 365um)
embedded in the absorber with a pitch
of 1.6 mm
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The proton Zero Degree Calorimeter
ALICE

» 30 grooved slabs, 4 mm thick, stacked
to form a parallelepiped
22.4-12.150cm?®

Protons and neutrons are separated by the

LHC separator magnet D1
> Space constraints are less severe > 1680 quartz fibers (& = 550um)
3 embedded in the absorber with a pitch
» Use brass (p =9g/cm°) of 4 mm

Nucleon impact points

12 cm
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Detector structure and segmentation

ZN ZP

@%ﬁ

The fibers are placed at 0° with respect to the beam axis and emerge on the rear face
of the calorimeter, guiding the light to the PMTs.

PMT 1

PMT 2

PMT 3

PMT 4

O o0Oe @ O

PMTC

One out of two fibers is sent to a photomultiplier (PMTc), while the remaining fibers are
grouped in bundles and connected to four different photomultipliers (PMT1 to PMT4),
forming four independent towers.

» Position-sensitive device (with limited resolution)
» Redundancy in case of PM failure
» Noise reduction using the coincidence of common PM with sum of towers
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Physics processes involving ZDCs
Hadronic interaction ZEN Spectator nucleons

~0

» impact parameter < Ry + R»

> spectator neutrons emitted
from both nuclei
= signal in both ZN

. . . ZDC
> large signal at mid rapidity Spectator nucleons

Single electromagnetic dissociaton: b > 2rp, = EM interaction
» at least one neutron (1n) is emitted by a given Pb nucleus (whatever the fate

of the other nUC|eUS) A InelastiE Al Ay Elastic A1 InelastiE Aj
» small signal at mid rapidity
E; E Ep
- e »
Az Elastic Ay A A5 Elastic A

Mutual electromagnetic dissociation A Blastic 41 inclastic 4i
> atleast 1n is emitted by both Pb nuclei
» sub-process of single EMD B =
» small signal at mid rapidity “ o A:i Tt T "
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ZDC minimum bias trigger

ALICE

» Require a minimum energy deposition
of ~1TeV (~ 500 GeV in RUN1) in
ZNA or ZNC

» ~ 30 below 1n energy deposition

» Electromagnetic dissociation
dominates (mainly single neutron
emission)

» Hadronic processes are also selected

CALOR2018 P. Cortese for the ALICE Collaboration 10/38



Use of minimum bias ZDC trigger in ALICE (a.k.a. EMD or 1ZED)

Pb-Pb /syy = 2.76 TeV  ALICE Performance 20/05/2011
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The cross section for EMD trigger (1ZED)
is measured in van der Meer (vdM) scans

oy rzne = 871.4£0.6 (stat) T35 (syst) b

arXiv:1305.7044 [nucl-ex], Int. J. Mod. Phys. A 29 (2014) 1430044

Several cross section measurements in Pb-Pb data taking are related to ZDC vdM

Cross sections:
O — G¥IM . Nproc
proc — OZNA orZNC N
IZNA orZNC " €proc
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Isolate electromagnetic contribution

ALICE
Require a signal over thresold in one calorimeter and not on the other side
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= hadronic events, which always lead to disintegration of both colliding nuclei,
are rejected

= mutual EMD events are also removed from the spectrum
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Identifying mutual EMD and hadronic contributions

ALICE
Select events with activity in both neutron calorimeters
% y == r. H : %
= 10 10* =10t
Q 2
g 5
“ 10°  810°

102 1%
10
10 g
] 1f Breeen o
0 20 40 60 80 100
Ezna (TV) Ezna (TEV)
Separation of electromagnetic and no signal in both ZEM calorimeters
hadronic contributions using ZEM = mutual EMD

calorimeters signal in at least one ZEM
Energy threshold for each ZEM ~ 10 Gev = hadronic events (HAD)
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Comparison with models
Solid lines are the predictions by RELDIS
(Relativistic ELectromagnetic DISsociation

model) phys. Rev. C 64 (2001) 024903,
Part. Nucl 42 (2011) 215.

EMD cross sections as a function of the
effective Lorentz factor Y. = 2y% — 1
i.e. y of a nucleus in the rest frame of the other

Phys.

Osingleemp = 187.4£0.2stat. "33 sys. b ]

prediction:

OsingleeMp = 185.2+9.2b

-

EMD cross section (b)

Pb-Pb single EMD

| LHC
RELDIS
. LHC\sNN_276TeV
SPS o SPS\sy, =7.6GeV
vl vl cd vl rd v 3
1 10 10% 10° 10* 10° 10° 107

PRL 109, 252302 (2012) eff

[ Good description by the model despite large increase in Y.
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Event selection in Pb-Pb

time of collision

Beam 2 ALICE

tﬁDC +t(Z:DC (nS)

-10

-20

B o

@
_— P2

Beam 1

10,

e°°9
e%& Oﬁe
050

O[—ALICE Performance
F 06/05/2011 €

o / 10
Satelllte Satelllte

| ZDC Timing: Sum vs Difference of ZDC time in A and C sides |

PR R
20 30
%Dc_tinc (ns)

ZNC

ZNs used to reject parasitic
collisions of main bunches with
satellite bunches positioned at one
or more RF buckets from a main
bunch.

> Large cluster = collisions
between ions in the nominal
RF buckets of each beam

» Small clusters = collisions in
which one of the ions is
displaced by one or more RF
buckets.

» Some satellite-satellite
collisions are also visible

ZNC

CALOR2018

Zvertex  ZNA
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Reject EM interactions in Pb-Pb
ZNs used to increase the purity of the hadronic MB sample
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ALICE

10°F selection on ZN signal
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ZDC: 3o cut above single

neutron peak in ZNA and

ZNC

= reduce the e.m.

induced interactions.
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Centrality estimation in Pb-Pb
The volume of the interacting region depends on the impact parameter b ALICE
and can be expressed via the number of participating nucleons Npart

participants
before collision after collision
central collisions peripheral collisions
(@ ®) projectile spectators
5
(b) projectile spectators
ZDC
£&hdy— zDe &;
projectile

5
%
@y

ZDCs in principle allow for a direct estimate of Npat = A-Ngpec through the detection of
the energy carried away by the non-interacting nucleons (“spectators”), however. ..
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Centrality estimation at colliders
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Centrality estimation at colliders

Centrality classes defined by cuts on the
two-dimensional distribution ZDC energy vs
ZEM amplitude.

Yield (a.u.)

ALICE Performance
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Independent centrality estimate, complementary to the ones performed using
particle multiplicity. Insensitive to vertex position.
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ZDC in p-Pb

ALICE

In the Pb remnant side ZDC detects the so called “slow nucleons” emitted by the
excited nucleus:

Black nucleons -> equilibrated particles, from evaporation, disintegration, or
fragmentation of the remnants of the original nucleus

Gray nucleons -> prompt, pre-equilibrium particles, knocked out of the nucleus

nucleus

l l B l p(MeV/c) l Eyin(MeV) ‘ forward @

Black | 0-+0.25 0-+-250 0+-30 gray @ - -®

Grey | 0.25+0.70 | 2501000 | 30400 black @ )

Experimental results modelled by Slow Nucleon Model (SNM): a parameterization of
experimental results in hadron-nucleus interactions at lower energies

ZDC response in p-A is monothonic w.r.t. impact parameter

CALOR2018
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ZDC centrality estimation

ALICE
ZN/ZP Gilauber fit with slow nucleon model
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Other centrality estimators: p-Pb vs. Pb-Pb

ALICE
Correlation between V0 amplitude (2.8 <1 < 5)
with hits in Silicon Pixel Detector SPD (-2 < n < 2)
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ZNvs. VO in p-Pb

ALICE
VO vs. ZNA ZPA vs. ZNA
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stronger correlation between ZPA and ZNA w.r.t. VO.
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Multiplicity bias
In p-A multiplicity fluctuations at a given impact parameter b cause a bias in ALICE
centrality estimation for barrel detectors
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Phys. Rev. C 91 (2015) 064905
Black/gray neutron doesn’t seem to be correlated with multiplicity fluctuations
For the moment there is no indication of bias in the ZN centrality estimator
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Longitudinal asymmetry

p— A= asymmetric collision
» unequal number of participant
nucleons
» longitudinal asymmetry
» rapidity shift
Pb— Pb = symmetric collision
> fluctuations in the number of
participants
> A in one colliding nucleus,
B in the other nucleus

> rapidity shift?

CALOR2018
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Longitudinal asymmetry in simulation
Pb-Pb Glauber Monte-Carlo

ALICE
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Measuring rapidity shift
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» Pesudorapidity distributions are affected by longitudinal asymmetry
> results in a rapidity shift

» Study influence on other signals
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The LHC heavy-ion program

ni TCE
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» The LHC heavy-ion program will extend to RUN 3-4 (Pb-Pb, p-Pb, Ar-Ar)
» Upgrades of the injection chain will allow to reduce bunch spacing to 50 ns in

Pb-Pb

> interaction rate from 8kHz' to > 50kHz
» delivered luminosity > 10x w.r.t. Run 1-2

» A major upgrade of the ALICE detector during LS2 (2019-2020) will allow to exploit
delivered luminosity and to improve the physics performance

"ALICE can acquire full MB data at ~ 1kHz

CALOR2018
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Opportunities and challenges

ALICE

» Higher luminosity

> Better significance for rare signals > High rate
» Central barrel upgrades > Heavy data
> Access to low pr heavy-quark probes > Low pr
> Forward upgrades > Low signal over background

> Detection of signals from
thermalization

ALICE strategy

» Run triggerless
> Online filtering

» Online data reduction
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ALICE upgrade strategy
ALICE

Time Projection Chamber New MB trigger New inner tracking system
- GEM readout chambers detector: FIT - high resolution
- faster FEE and continuous readout - low material budget

Muon Forward Tracker
- high resolution
- low material budget

DAQ and High Level Trigger
- new architecture
Computing

- fast online reconstruction

- data reduction @ 50 kHz -

New beryllium pipe with
smaller radius

TOF, ZDC

- continuous readout
Muon arm

New Central Trigger Processor - continuous readout
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Strategy for ZDC upgrade

» Improvement of the readout performance: ALICE

read out the detector at 100 kHz hadronic rate without dead time

For ZDC this is accompanied by ~ 5 MHz EMD rate ]

» cannot be achieved using the current QDCs because of the fixed
dead time due to the charge conversion of ~ 10 us per event

» possible using digitizers
This proposal was tested during the Pb-Pb 2016 data taking with a

parallel acquisition system
Main features of investigated digitizer are:

v/ sampling frequency 1 Gsample/s
v 1 Vpp dynamics
v/ Adjustable offset
II' 10 bit resolution, 12 bit would be better
v/ 8 channels
% 80 MB/s readout bandwidth

CALOR2018 P. Cortese for the ALICE Collaboration 34/38




Test of a FMC digitizer

ALICE

FPGA Mezzanine Card
v 1 Gsample/s
v’ 1 Vpp dynamics
Il Not ajustable offset

Il Not full DC coupling (balun +
capacitors)

v’ 12 bit resolution
v/ 4 channels

v/ continuous waveform readout to
FPGA through 8 JESD204B serial
lines
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Triggering in extreme events
» Bunch spacing in Pb-Pb will be reduced to 50 ns in LHC ALICE
» Worst case is an event with maximum neutron multiplicity followed by an event with

single-neutron emission

A (ch)
o
A (ch)

-200

|
IS
S
=]

|
=3
=3
=]

ST\‘\\\‘\\\‘\\\‘\\\‘\\\

-800

-1000

Y AL AL AN N AR AR AP S AR

v e e b Lo B B 1y |l -8 v e b b b b b B 1y |l
160 180 200 220 240 260 280 300 ! 160 180 200 220 240 260 280 300
t(ns) t(ns)

-

o samples that satisfy trigger requirement: digital differential discriminator
(Vi = Yigshitt) > th&& (Vig1 — Yirshirtr1) > h&& (Vipe = Yiyshirr2) > th

o samples for which derivative turns positive: rough estimation of the signal time

» Discriminator principle is working
> Will benefit from a reduction in ringing
> A few similar algorithms were developed
> Will be tested during the Pb-Pb data taking in November 2018
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Issues with present digitizer

o
D R R RN R RN RARRN AR

PN PN AR AR B A A BRI
0 1000 2000 3000 4000 5000 6000 7000 8000
t (ns)

» Digitizer has not full DC coupling
> baseline is not immediately restored
> ~ 0.5% effect but can become
important at high rates
» Full DC digitizers are not very common
on the market
> identified a new board and preparing
to test in the lab.

CALOR2018

ALICE

» VITA 57 standard is not VME. . .
»> Match between FMC and carrier board
is not straightforward
»> FPGA performance
> pin usage
> configuration
> Varying degree of vendor lock-in

» Clocking issues
> |deally board clock should be
synchronized with machine clock
> most digitizers have not enough
flexibility
> need to replace on-board VCXO
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Conclusions

» ZDCs are widely employed in ALICE

» trigger

» event selection
» geometry of the collision

> centrality
> longitudinal asymmetry
> event plane

» EMD cross sections are well described by theoretical models
» luminosity monitoring

> Need to preserve ZDC performances in Pb-Pb operation in RUN3

» challenging due to the reduced bunch spacing and higher rates
» fast digitizers seem to be a viable solution

ALICE
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