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ALICE: the dedicated heavy-ion experiment at LHC

Side A

Side C

• Central barrel (|η |< 1) in a solenoidal field with excellent tracking and PID capabilities
Study of hadronic signals, photons and dielectrons
• Forward muon spectrometer (2.5 < η < 4): study quarkonia and heavy flavour decays
• Forward detectors (|η |> 3) to characterize the collision: timing, vertex, centrality,
event plane. FMD,T0,V0 and ZDC (|η |> 8.7 at ∼ 112.5m from interaction point)
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The ALICE Zero Degree Calorimeters: ZEM

Placed at 0◦ w.r.t LHC axis, ~112.5 m from IP on both sides (A and C)
Based on the detection of Cherenkov light produced in quartz fibers

I 2 neutron calorimeters (ZNA and ZNC) placed between the beam pipes |η |> 8.7
I 2 proton calorimeters (ZPA and ZPC) close to the outgoing beam pipe
I 2 small electromagnetic calorimeters (ZEM1, ZEM2) placed at ~7.5 m from the IP,

at ±8 cm from LHC axis, only mounted on A side covering 4.8 < η < 5.7

ZDC ALICE IP

114 m

SIDEC

ZP

Sketch view of A side

7 m
ZEM
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Pb
n Pb
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The neutron Zero Degree Calorimeter

Severe space contraints due to the
limited space available between
the LHC beam pipes

ZNA

Pb
n Pb

I W-alloy (ρ = 17.6g/cm3)
I 44 grooved slabs, 1.6 mm thick,

stacked to form a parallelepiped
7.2 ·7.2 ·100cm3.

I 1936 quartz fibers (� = 365 µm)
embedded in the absorber with a pitch
of 1.6 mm
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The proton Zero Degree Calorimeter

Pb Pb

ZPA
p

Protons and neutrons are separated by the
LHC separator magnet D1
I Space constraints are less severe
I Use brass (ρ = 9g/cm3)

I 30 grooved slabs, 4 mm thick, stacked
to form a parallelepiped
22.4 ·12 ·150cm3

I 1680 quartz fibers (� = 550 µm)
embedded in the absorber with a pitch
of 4 mm.

Nucleon impact points
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Detector structure and segmentation

  

ZN
ZP

PMT 1

PMT 2

PMT 3

PMT 4

PMT C

The fibers are placed at 0◦ with respect to the beam axis and emerge on the rear face
of the calorimeter, guiding the light to the PMTs.

One out of two fibers is sent to a photomultiplier (PMTc), while the remaining fibers are
grouped in bundles and connected to four different photomultipliers (PMT1 to PMT4),
forming four independent towers.

I Position-sensitive device (with limited resolution)
I Redundancy in case of PM failure
I Noise reduction using the coincidence of common PM with sum of towers
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Physics processes involving ZDCs
Hadronic interaction
I impact parameter < R1 +R2
I spectator neutrons emitted

from both nuclei
⇒ signal in both ZN

I large signal at mid rapidity

Spectator nucleons

Spectator nucleons

ZDC

ZDC

ZEM

Single electromagnetic dissociaton: b > 2rPb ⇒ EM interaction
I at least one neutron (1n) is emitted by a given Pb nucleus (whatever the fate

of the other nucleus)

I small signal at mid rapidity
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1

Mutual electromagnetic dissociation
I at least 1n is emitted by both Pb nuclei
I sub-process of single EMD
I small signal at mid rapidity
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ZDC minimum bias trigger
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PRL 109, 252302 (2012)

I Require a minimum energy deposition
of ∼ 1 TeV (∼ 500 GeV in RUN1) in
ZNA or ZNC
I ∼ 3σ below 1n energy deposition

I Electromagnetic dissociation
dominates (mainly single neutron
emission)

I Hadronic processes are also selected
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Use of minimum bias ZDC trigger in ALICE (a.k.a. EMD or 1ZED)
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The cross section for EMD trigger (1ZED)
is measured in van der Meer (vdM) scans

ZDC rate is used for luminosity monitoring
From (ZNA or ZNC) rate

σ
vdM
ZNA or ZNC = 371.4±0.6 (stat.)+24

−19 (syst.) b

arXiv:1305.7044 [nucl-ex], Int. J. Mod. Phys. A 29 (2014) 1430044

Several cross section measurements in Pb-Pb data taking are related to ZDC vdM
cross sections:

σproc = σ
vdM
ZNA or ZNC ·

Nproc

NZNA or ZNC · εproc
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Isolate electromagnetic contribution

Require a signal over thresold in one calorimeter and not on the other side
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⇒ hadronic events, which always lead to disintegration of both colliding nuclei,
are rejected

⇒ mutual EMD events are also removed from the spectrum
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Identifying mutual EMD and hadronic contributions

Select events with activity in both neutron calorimeters
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hadronic contributions using ZEM
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⇒ mutual EMD
signal in at least one ZEM
⇒ hadronic events (HAD)
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Comparison with models
Solid lines are the predictions by RELDIS
(Relativistic ELectromagnetic DISsociation
model) Phys. Rev. C 64 (2001) 024903, Phys.
Part. Nucl 42 (2011) 215.

EMD cross sections as a function of the
effective Lorentz factor γeff = 2γ2−1
i.e. γ of a nucleus in the rest frame of the other

σsingleEMD = 187.4±0.2stat .+13.2
−11.2sys.b

prediction:

σsingleEMD = 185.2±9.2b

LHC

SPS

PRL 109, 252302 (2012)

Good description by the model despite large increase in γeff
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Event selection in Pb-Pb
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ZNs used to reject parasitic
collisions of main bunches with
satellite bunches positioned at one
or more RF buckets from a main
bunch.
I Large cluster⇒ collisions

between ions in the nominal
RF buckets of each beam

I Small clusters⇒ collisions in
which one of the ions is
displaced by one or more RF
buckets.

I Some satellite-satellite
collisions are also visible
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Reject EM interactions in Pb-Pb
ZNs used to increase the purity of the hadronic MB sample

purity =

dNHad
dV0

σHad
NHad

dNHad
dV0

σHad
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+ dNSD
dV0
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1n
selection on ZN signal

ZDC: 3σ cut above single
neutron peak in ZNA and
ZNC
⇒ reduce the e.m.
induced interactions.
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Centrality estimation in Pb-Pb
The volume of the interacting region depends on the impact parameter b
and can be expressed via the number of participating nucleons Npart

central collisions peripheral collisions

ZDCs in principle allow for a direct estimate of Npart = A–Nspec through the detection of
the energy carried away by the non-interacting nucleons (“spectators”), however. . .

CALOR2018 P. Cortese for the ALICE Collaboration 20/38



Centrality estimation at colliders

  

N. De Marco

ZDC

ZDC

    

. . . unlike the fixed target experiment, at the
colliders the monotonic correlation between
impact parameter and ZDC response is
partially destroyed.
In peripheral collisions many nucleons
remain bound in nuclear fragments, that
continue to travel in the beam pipe and are
not detected by the ZDC.

Central

Peripheral

NA50: Pb-Pb

ALICE Pb-Pb: EZDC vs. EZEM

ALI−PERF−12199

Peripheral

Central
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Centrality estimation at colliders

Centrality classes defined by cuts on the
two-dimensional distribution ZDC energy vs
ZEM amplitude.
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ZDC Energy vs ZEM Amplitude (4 centrality bins selected by V0 Amplitude)
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V0 Amplitude distribution split in centrality bins

Distribution of V0 amplitude (Nch) for all
triggered events and for centrality classes
selected from the two-dimensional
distribution ZDC energy vs ZEM amplitude.

Independent centrality estimate, complementary to the ones performed using
particle multiplicity. Insensitive to vertex position.
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ZDC in p-Pb

In the Pb remnant side ZDC detects the so called “slow nucleons” emitted by the
excited nucleus:

Black nucleons -> equilibrated particles, from evaporation, disintegration, or
fragmentation of the remnants of the original nucleus

Gray nucleons -> prompt, pre-equilibrium particles, knocked out of the nucleus

β p (MeV/c) Ekin (MeV )

Black 0÷0.25 0÷250 0÷30
Grey 0.25÷0.70 250÷1000 30÷400

Experimental results modelled by Slow Nucleon Model (SNM): a parameterization of
experimental results in hadron-nucleus interactions at lower energies

ZDC response in p-A is monothonic w.r.t. impact parameter
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ZDC centrality estimation

ZDC energy distributions on the Pb
remnant side and classification in centrality
bins.
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Other centrality estimators: p-Pb vs. Pb-Pb

Correlation between V0 amplitude (2.8 < η < 5)
with hits in Silicon Pixel Detector SPD (−2 < η < 2)
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ZN vs. V0 in p-Pb

V0 vs. ZNA ZPA vs. ZNA
2.8 < η < 5 vs. η > 8.8
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stronger correlation between ZPA and ZNA w.r.t. V0.
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Multiplicity bias
In p-A multiplicity fluctuations at a given impact parameter b cause a bias in
centrality estimation for barrel detectors
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Black/gray neutron doesn’t seem to be correlated with multiplicity fluctuations
For the moment there is no indication of bias in the ZN centrality estimator
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Longitudinal asymmetry

p−A⇒ asymmetric collision
I unequal number of participant

nucleons
I longitudinal asymmetry
I rapidity shift

Pb−Pb ⇒ symmetric collision
I fluctuations in the number of

participants
I A in one colliding nucleus,

B in the other nucleus
I rapidity shift?
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Longitudinal asymmetry in simulation

Pb-Pb Glauber Monte-Carlo
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Measuring rapidity shift
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I Pesudorapidity distributions are affected by longitudinal asymmetry
I results in a rapidity shift

I Study influence on other signals
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The LHC heavy-ion program

I The LHC heavy-ion program will extend to RUN 3-4 (Pb-Pb, p-Pb, Ar-Ar)
I Upgrades of the injection chain will allow to reduce bunch spacing to 50 ns in

Pb-Pb
I interaction rate from 8kHz1 to ≥ 50kHz
I delivered luminosity > 10× w.r.t. Run 1-2

I A major upgrade of the ALICE detector during LS2 (2019-2020) will allow to exploit
delivered luminosity and to improve the physics performance

1ALICE can acquire full MB data at ∼ 1kHz
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Opportunities and challenges

I Higher luminosity
I Better significance for rare signals

I Central barrel upgrades
I Access to low pT heavy-quark probes

I Forward upgrades
I Detection of signals from

thermalization

I High rate
I Heavy data

I Low pT
I Low signal over background

ALICE strategy

I Run triggerless
I Online filtering

I Online data reduction
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ALICE upgrade strategy
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Strategy for ZDC upgrade
I Improvement of the readout performance:

read out the detector at 100 kHz hadronic rate without dead time

For ZDC this is accompanied by ∼ 5 MHz EMD rate

I cannot be achieved using the current QDCs because of the fixed
dead time due to the charge conversion of ≈ 10 µs per event

I possible using digitizers

This proposal was tested during the Pb-Pb 2016 data taking with a
parallel acquisition system
Main features of investigated digitizer are:

" sampling frequency 1 Gsample/s

" 1 Vpp dynamics
" Adjustable offset

!! 10 bit resolution, 12 bit would be better

" 8 channels

$ 80 MB/s readout bandwidth
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Test of a FMC digitizer

FPGA Mezzanine Card

" 1 Gsample/s

" 1 Vpp dynamics
!! Not ajustable offset
!! Not full DC coupling (balun +

capacitors)

" 12 bit resolution

" 4 channels

" continuous waveform readout to
FPGA through 8 JESD204B serial
lines
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Triggering in extreme events
I Bunch spacing in Pb-Pb will be reduced to 50 ns in LHC
I Worst case is an event with maximum neutron multiplicity followed by an event with

single-neutron emission
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◦ samples for which derivative turns positive: rough estimation of the signal time
I Discriminator principle is working

I Will benefit from a reduction in ringing
I A few similar algorithms were developed

I Will be tested during the Pb-Pb data taking in November 2018
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Issues with present digitizer
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I Digitizer has not full DC coupling
I baseline is not immediately restored
I ∼ 0.5% effect but can become

important at high rates
I Full DC digitizers are not very common

on the market
I identified a new board and preparing

to test in the lab.

I VITA 57 standard is not VME. . .
I Match between FMC and carrier board

is not straightforward
I FPGA performance
I pin usage
I configuration

I Varying degree of vendor lock-in

I Clocking issues
I Ideally board clock should be

synchronized with machine clock
I most digitizers have not enough

flexibility
I need to replace on-board VCXO
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Conclusions

I ZDCs are widely employed in ALICE

I trigger
I event selection
I geometry of the collision

I centrality
I longitudinal asymmetry
I event plane

I EMD cross sections are well described by theoretical models
I luminosity monitoring

I Need to preserve ZDC performances in Pb-Pb operation in RUN3
I challenging due to the reduced bunch spacing and higher rates
I fast digitizers seem to be a viable solution
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