Prospects for a precision timing upgrade of the CMS $PbWO_4$ crystal electromagnetic calorimeter for the HL-LHC

Vincenzo Ciriolo,

On behalf of the CMS Collaboration

Università degli Studi & INFN of Milano-Bicocca

May 24, 2018

The CMS Electromagnetic Calorimeter (ECAL)

- Homogeneous, compact, hermetic, fine grain PbWO₄ crystals calorimeter
- Designed for excellent energy resolution (< 1 % for 60 GeV γ)

- Divided in two regions:
 - ightarrow Barrel (EB): $|\eta| < 1.48$, 61200 channels, APD readout
 - ightarrow 2 Endcaps (EE): 1.48 < $|\eta|$ < 3, 14648 channels, VPT readout
- Preshower detector:
 - $ightarrow \ 1.65 < |\eta| < 2.5$
 - $\rightarrow~$ lead/ silicon strips detector
 - $\rightarrow \mbox{ aid } \pi^{\rm 0}/\gamma \mbox{ discrimination}$

The ECAL PbWO₄ crystals and readout

- Design ECAL requirements: time jitter < 1 ns to ensure good energy resolution
- PbWO₄ fast scintillator for an EM shower:
 - $\rightarrow~\sim$ 90 % light emitted within 25 ns
 - $\rightarrow~\sim$ 10 % contribution from Cherenkov emission

- \bullet Current pulse shaping optimized for the LHC conditions \rightarrow to change at HL-LHC
 - $\rightarrow~$ 43 ns electronics shaping time
 - $\rightarrow\,$ sampling at 40 MHz
- Arrival time information extracted from pulse shape

Several contribution to single channel timing resolution:

- Electromagnetic shower development fluctuations:
 - ightarrow longitudinal shower fluctuations
 - ightarrow optical transit time spread
- Photodetector + electronics
 - ightarrow photodetector rise and transit time
 - $\rightarrow\,$ dark current rate and noise
 - ightarrow electronics shaping time
- DAQ clock distribution

Current time resolution

- PbWO4 crystals intrinsic time resolution measured at test beam: $\rightarrow~\sim$ 20 ps constant term
- In-situ measurements:
 - ightarrow close-by crystals (same readout unit) of the same shower \sim 70 ps
 - $\rightarrow\,$ crystals in different clusters with Z–yee events $\sim\,150~ps$

The HL-LHC

- HL-LHC ultimate performance:
 - Instantaneous peak luminosity $\mathcal{L}=7.5{\cdot}10^{34}~\text{cm}^{-2}\text{s}^{-1}$
 - $L = 4500 \text{ fb}^{-1}$ in 10 years
- 6 times higher level of radiation than at LHC
- $\bullet\,$ Mean number of interactions per bunch-crossing from 50 \rightarrow 200
- Degradation of object reconstruction performance
 - ightarrow necessary upgrade of CMS sub-detectors

Event recorded during special high pileup fill with \sim 100 concurrent interactions one

Vincenzo Ciriolo

CMS Upgrade overview

ECAL Barrel Upgrade overview

ECAL electronics upgrade mandatory to meet HL-LHC L1 trigger requirements

- Increase latency: 4.6 μ s \rightarrow 12.5 μ s
- L1 accept rate: 750 kHz

ECAL electronics upgrade key points:

Trigger

- Provide **crystal by crystal information at L1** trigger (currently 5x5 crystals granularity)
 - $\rightarrow~$ enhance spike rejection
 - $\rightarrow~$ improve objects identification

Energy resolution

- Reduce APD noise due to radiation damage
 - $\rightarrow~$ cooling of crystals and photodetectors $18^\circ C \rightarrow 9^\circ C$

Precision timing

• Goal: **30 ps time resolution** for deposits with E> 50 GeV (photons from H $\rightarrow \gamma\gamma$ decay)

EL OQO

ECAL barrel upgrade

- Keep the same crystals and APDs
- Replace Very Front-End (VFE), Front-End (FE) and off-detector electronics
- Upgrade VFE electronics:
 - $\rightarrow\,$ dual gain Trans Impedance amplifier (TIA)
 - $\rightarrow\,$ preserve a **fast signal** to optimize time resolution
 - $\rightarrow\,$ shorter shaping time (43 ns \rightarrow 20 ns)
- ADC sampling increased to 160 MHz
- CMS clock distribution key role
 - $\rightarrow~{\rm ensure}\,<\,10$ ps stability across CMS

More in talk by S. Pigazzini: "The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC "

Benefits from ECAL precision timing

Benefits from ECAL precision timing probed on H $\rightarrow \gamma\gamma$ benchmark channel

- Resolution on vertex z position < 1 cm
 - \rightarrow negligible impact on $m_{\gamma\gamma}$ resolution
- Currently determined exploiting recoiling tracks: $\epsilon \sim$ 80 %
 - $\rightarrow\,$ drop to \sim 30% at HL-LHC
- vertex z determined via γ triangulation
 - $\rightarrow\,$ recover part of inefficiency: $\epsilon\sim$ 50 %

Benefits from ECAL precision timing

Long-lived particles predicted by many BSM theories

- Several experimental signatures featuring delayed photons
- $\bullet\,$ Simulation study performed on $\tilde{\chi}_1^0 \to \tilde{G} + \gamma$
- Photon time of arrival exploited to identify the signal
- Analysis benefit from ECAL precision timing
 - → increase sensitivity to short lifetime and high mass neutralinos (green region in the plot)

Anomalous APD signal mitigation

- Hadron interaction in APD
 - \rightarrow anomalous signals (*spike*)
 - $\rightarrow~$ faster pulse than scintillation signal
 - $\rightarrow \mbox{ exploit pulse shape for } \\ \mbox{ discrimination }$

normalised amplitude

Vincenzo Ciriolo

Test Beam campaigns

- Test beam performed in 2015, 2016, 2017 @ CERN SPS
 - $\rightarrow~$ assess PbWO_4 intrinsic timing capabilities
 - ightarrow test performance with the upgraded electronics
- 5x5 matrix of ECAL crystals + APD
- Different VFE configurations
- Signal readout by **fast digitizer** (CAEN V1742, **5 GS/s**)
- Time information extracted from fit of the pulse shape
- Micro-channel plates (MCP) detector to provide time reference ($\sigma_t \sim 20 \text{ ps}$)
- Time resolution extracted from gaussian fit of the t_{MCP} - t_{crystal} distribution

May 24, 2018

13 / 16

2015 Test beam results: impact of shaping time

- Employed current VFE electronics
- Compared performance with current (43 ns) and reduced (21.5 ns) shaping time
- Shorter shaping time $\rightarrow \sim$ factor 2 gain in A/σ_{noise} (signal/RMS noise)
- CMS in situ: $A/\sigma_{noise} \sim 800$ for a 50 GeV EM shower

2016 Test beam results with new electronics prototype

- Test performance of prototype VFE with TIA component
- Lower sampling frequency emulated at analysis level
 - $\rightarrow\,$ ultimate performance already with 160 MS/s sampling
- $\sigma_{
 m t}\sim 30$ ps for A/ $\sigma=250$
 - \rightarrow 25 GeV at HL-LHC start (100 MeV noise)
 - \rightarrow 60 GeV at HL-LHC end (250 MeV noise)

- The HL-LHC will be a challenging experimental environment for the LHC experiments
 - $\rightarrow\,$ CMS detector upgrade necessary to fully exploit the amount of data provided by the HL-LHC
- Precision timing powerful means through which mitigate pileup effects
- ECAL barrel electronics upgraded to cope with HL-LHC conditions:
 - $\rightarrow\,$ possibility to include precision timing for high energy EM showers
 - $\rightarrow\,$ goal: 30 ps time resolution for EM showers with E> 50 GeV
- \bullet Intrinsic PbWO4 time resolution and performance of new readout tested at test beam
 - $\rightarrow~$ 30 ps time resolution achieved during test beams

ELE NOR

Additional Material

-

Clock impact on ECAL time resolution

- Clock distribution checked exploiting laser system
- Many crystals illuminated at the same time across different readout units
- One crystal taken as reference (t_{ref})
 - $\rightarrow\,$ timing resolution from gaussian fit to $t_{crystal} t_{ref}$
- \bullet Timing resolution of $\sim 40~ps$ measured across whole ECAL
- Clock distribution instabilities between different readout units
 - $ightarrow \sim$ 100 ps shift in signal peak position
 - ightarrow Instabilities occur after system resets

- Common CMS effort for precise clock distribution for Phase 2 upgrade
- Goal: 10-15 ps RMS jitter
- Two approaches being investigated:
 - $\rightarrow\,$ LHC clock encoded within the IpGBT control links
 - $\rightarrow\,$ dedicated clock fibers + fan-out chips
- Slow variation of phase monitored and calibrated in-situ from minimum bias events