Fermilab Dus. Department of Science

Precision Timing with the CMS MIP Timing Detector

Cristián H. Peña

On behalf of the CMS Collaboration.

May 24, 2018

In partnership with:

Introduction

 HL-LHC upgrade will increase beam intensity to achieve O(10) increase in instantaneous luminosity:

😤 Fermilab

🛟 Fermilab

Density of pp collisions

per unit distance along

- Baseline: peak $L = 5.0 \times 10^{34} \text{ cm}^{-1}\text{s}^{-1}$
- Baseline: peak L = $7.5 \times 10^{34} \text{ cm}^{-1}\text{s}^{-1}$

2 5/24/2018 Cristián H. Peña I Precision Timing with the CMS MIP Timing Detector

Impact of pileup in CMS

• Due to the increased line density, a larger number of spurious (pileup) tracks are associated to the primary vertex

 In the ultimate scenario, at the leveled luminosity, 30% of tracks associated to the PV are spurious

‡ Fermilab

Using Precision Timing to Mitigate Pileup

- Time-of-arrival measurement can discriminate between collisions occurring very close in space, but separated in time.
- Suppress spurious track-to-PV association by more than factor of 3

Pileup Mitigation with Timing

- Lepton and Photon isolation improves by using timing information
- At 97% efficiency working point, recover ~6-7% off at the same background rejection
- For precision measurements it's critical to maintain low fake lepton background due to large systematic uncertainties

Significant Impacts on Physics Reach I

- Significant impact on HL-LHC Higgs program
 - 26% increase in effective luminosity for $H \rightarrow ZZ \rightarrow 4\ell$
 - 22% increase in effective luminosity for HH→bbyy
 - 25% increase in effective luminosity for VBF $H\!\rightarrow\!\tau\tau$

Significant Impacts on Physics Reach II

- New window to probe Long-lived particles.
 - Vertex timing enhances Long-lived particle physics program
 - In topologies involving secondary vertices, MTD provides a unique handle to reconstruct the mass of the long lived NEUTRAL particles (eg. χ^0)

7

Significant Impacts on Physics Reach III

- New window to probe Long-lived particles.
 - Vertex timing enhances Long-lived particle physics program
 - Using ISR particle to reconstruct vertex time

MTD Design Overview

• Hermetic coverage for $|\eta| < 3$

Technology Choice and Considerations

- Barrel Timing Layer (LYSO+SiPM)
 - Larger surface area
 - Lower radiation dose
 - Mature readout ASIC technology

- Endcap Timing Layer (LGAD)
 - Larger radiation dose
 - More flexible installation schedule → time for R&D
 - R&D synergies with ATLAS

BTL Sensor Performance

Single sensor performance requirement demonstrated

Cristián H. Peña I Precision Timing with the CMS MIP Timing Detector 5/24/2018

Barrel Timing Layer Design

- 11.5x11.5 mm² LYSO tiles
- 4x4 mm² SiPM
- 250k channels

BTL tray in the rails of the tracker support tube (TST)

- CO₂ cooling
- Fully tested trays (20 kg) inserted into TST

Barrel Timing Layer Electronics

• TOFHIR ASIC:

Overall chip integration close to finalization

Front-end boards:

- Engineering design of readout units boards concluded
- Concentrator card and adapter board at hand
- Front-end board demonstration:
 - Nov: board assembled with chip
 - 2019 Q1: board fully validated

Endcap Design

 Low-gain avalanche diode (LGAD) are silicon sensor with a special avalanche gain-layer
Typical gain: 10-30

Fermilab

- Overlapping disk structure
- 1x3 mm² sensor channels
- Total 1.8 M channels

14

HDI wire-bonded to the ROCs

5/24/2018 Cristián H. Peña I Precision Timing with the CMS MIP Timing Detector

ETL Sensor Performance

 Target performance has been achieved for sensors irradiated up to fluence of 1.5x10¹⁵ eq. neutrons

E HPK 50A-PIX E ensor performance

 Target performance has beement were the sensors irradiat
Neutrons
Sensor uniformity precisely measured. Meets specification arget performance has beennaohieved for sensors irradiated up to1.5x10¹⁵

🛠 Fermilab

ETL Sensor R&D

- New Production addressing:
 - Increased radiation tolerance
 - Large sensor production
 - Improved fill factor

Conceptual design of HPK mask

‡ Fermilab

ETL Sensor R&D

- New Production addressing:
 - Increased radiation tolerance
 - Large sensor production
 - Improved fill factor

NEW sensor to be test at FNAL In a few weeks

ETL R&D: ASIC and readout

- One chip is matrix of ~100 LGAD pixels:
 - Measurement of Time-of-Arrival in every pixel within 25 ns LHC BX with 30 ps time resolution for the whole system.
- Chip development lead by Fermilab:
 - TSMC 65nm: experience, library, rad. dam. models from RD53
 - Ongoing design study of the preamp and CFD implementation
 - Exploring the possibility of common developments with ATLAS

Summary

- CMS MIP Timing Detector will significantly improve detector capabilities and expand physics reach for the HL-LHC program
 - 20-25% effective luminosity increase in crucial Precision Higgs Measurements
 - Expands reach for BSM searches using MET
 - Enables new capability to probe long-lived particles
- Project is significantly advanced.
 - Sensor performance close to specification
 - ASIC and Integration efforts ongoing
- Progress on sensor R&D, beam tests, and engineering design.
 - Optimize sensors to ensure 30 ps time resolution throughout the HL-LHC run

‡ Fermilab

SiPM R&D

R&D advancing on SiPMs to improve light collection efficiency and uniformity

- Large Area Sparse SiPM
- Ordered:
 - 25 of 20 μ m pitch
 - 25 of 15µm pitch
 - 10 assembled with 11.5x11.5 crystal
- •Delivery in Sept 2018

