

The CMS ECAL Upgrade for Precision Crystal Calorimetry at the HL-LHC

Simone Pigazzini

On behalf of the CMS collaboration

CALOR2018, Eugene (Oregon, USA) 21-25th May 2018

The CMS ECAL

- at LHC:
 - → Results and performance during RunI and RunII.

• at HL-LHC:

- → Detector challenges.
 - → Trigger.
 - \rightarrow Pile-up and noise mitigation.
- → Upgrade design and goals.
- \rightarrow Prospects for the upgraded detector.

The CMS ECAL

- CMS main features are the compact design and the high (3.8 T) magnetic field.
- The CMS ECAL is an homogeneous crystal scintillator (PbWO₄), the design was driven by volume constrains and energy performance requirements.
- ECAL has been a key component for the observation of the Higgs boson.
 - → Excellent resolution and electron/photon ID crucial for Higgs analysis.

HL-LHC and CMS upgrades

• **HL-LHC goal**: ×10 **integrated luminosity** delivered to the experiments (ATLAS, CMS):

	LHC	HL-LHC baseline	HL-LHC ultimate*
$\mathcal{L}_{inst}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	$2 imes 10^{34}$	$5 imes 10^{34}$	$7.5 imes10^{34}$
$PU(n_{vt \times s})$	40-60	140	200

*unexpected at the time of original ECAL TDR.

• CMS upgrade

- → Larger tracker ($|\eta| = 4$) and muon spectrometer ($|\eta| = 2.8$) acceptances.
- → Larger first level trigger (L1) rate: 100kHz →750kHz.
- → Tracking information at L1.
- → Detector upgrades to cope with larger radiation levels and higher pile-up.

CMS calorimeters at HL-LHC

- Endcaps: complete replacement of current calorimeters to cope with expected radiation flux.
 - → Radiation tolerant high granularity, silicon based, sampling calorimeter (HGCAL).
- **Barrel**: same technology →upgraded readout electronics.
 - → **ECAL**: $PbWO_4 + APD$.
 - → HCAL: Brass/plastic scintillator + SiPM.

ECAL APD performance

- ECAL barrel photo-sensors will continue to operate during HL-LHC:
 - → Increase in APD leakage current due to radiation damage →APD noise will dominate HL-LHC energy resolution.
 - → Mitigation:
 - → Lower ECAL operation temperature 6 - 9°C (now 18°C).
 - → Shorter pre-amplifier shaping time (reduce PU impact, better S/N).

ECAL trigger

- Improved Level-1 trigger capabilities needed at HL-LHC:
 - → larger trigger rates and trigger latencies mandatory to exploit increased luminosity and implement Level-1 track-trigger.
- Improved rejection of ECAL APD anomalous signals required.
 - → "Spike" from direct hadron ionization in APD volume.
 - → Large isolated signals.
 - → Faster signal than scintillation.
 - → Will dominate L1 trigger at HL-LHC if unsuppressed.

ECAL upgrade key aspects

• Replace off-detector electronics:

- → To cope with higher output bandwidth from FE and upgraded CMS L1 trigger.
- **Replace on-detector electronics** (VFE and FE):
 - → New pre-amplifier + ADC running at 160MHz.
 - → Spike rejection, pileup and noise mitigation.
 - → Precise time measurement.

• Run Colder:

→ mitigate increase in radiation induced APD noise.

The upgrade is needed to retain the excellent CMS ECAL performance.

TDR design choices

- Pre-amplifier: Trans Impedance Amplifier (TIA) architecture:
 - → matches the requirements for noise, pileup mitigation and CMS-wide effort for hermetic precision timing.
 - \rightarrow 2 TeV dynamic range (two gain ranges, G1 and G10) with 10 MeV LSB.
- ADC designed chosen: 12 bit, 160MHz sampling frequency.
 - \rightarrow Custom chip designed by external company + data compression system.
- FE card design:
 - → Fast optical links to stream crystal data off-detector through CERN IpGBT/VL+ chip.
- Off-detector electronics (OD):
 - → FPGA based. Will provide single crystal information to L1 trigger (750 kHz, 12.5 µs latency).

 Preamp
 ADC
 FE

VFE and FE R&D progress

→ VFE prototype (TIA) tested in recent test beams:

→ Noise performance matches expectation for HL-LHC.

- → FE demonstrator equipped with GBT chips:
 - → Data streaming tested with legacy VFE and trigger boards.

Detector refurbishment

- Replacement of all detector services during CERN LS3:
 - → LV/HV lines, cooling pipes, readout and control links.
 - → Improve insulation of water cooling pipes coupled to new cooling system.
 - → Will allow to cool the detector to 9°C. Lower temperatures will require further upgrades of the cooling system.

ECAL upgrade impact on trigger

• Spike suppression target: 1kHz @ L1 trigger $(E_T > 5 \text{ GeV}).$

- Shower shape discrimination: sensitive to noise and PU.
- Even with single crystal granularity the method used during Phase-I does not provide enough spike suppression.

ECAL upgrade impact on trigger

• Spike suppression target: 1kHz @ L1 trigger $(E_T > 5 \text{ GeV}).$

- Shape discrimination essential to achieve desired suppression level.
 - → Requires faster pre-amp and higher sampling frequency.

ECAL upgrade impact on physics analysis

- CMS physics program at HL-LHC includes:
 - → Precise measurement of the Higgs properties (e.g. self-coupling).
 - \rightarrow Search for BSM in exotic channels.

ECAL energy resolution.

ECAL time resolution.

- CMS ECAL performance has been key to the Higgs discovery/characterization during LHC Runl/II.
- Upgrade needed to maintain great performance throughout HL-LHC:
 - → Mitigate noise/pileup increase.
 - → Improve trigger capabilities.
 - \rightarrow Add precise time information to the event reconstruction.
 - → TDR published last year, prototypes being tested.
- Upgraded detector will again impact key aspect of the CMS physics program.

Additional material

Scintillation signal vs temperature.

 No significant shape changes with crystal temperature observed in TB (TIA prototype + 5GHz ADC).

