Physics requirements and performance of the FCC-hh Calorimeter

Michele Selvaggi (CERN) on behalf of the FCC-hh calo group

Eugene (Oregon) - CALOR 2018 - 21/05/2018

FCC-hh - Scope

- FCC-hh Target:
 - E_{CM} = 100 TeV
 - needs I6T magnets
 - I00 km long
- Direct Search for New Physics:
 - direct production of heavy resonances up to $m \approx 40 \text{ TeV}$
 - stops up to $m \approx 10 \text{ TeV}$
- Precision SM physics (complementary to e⁺e⁻):
 - Higgs potential, self-coupling ($\Delta\lambda/\lambda \approx 5\%$)
 - Higgs rare decays,
 - EWK, Top physics in new extreme dynamical regimes

Key parameters

- Luminosity:
 - baseline: 5e34 cm⁻² s⁻¹ (200 PU)
 - ultimate: 30e34 cm⁻² s⁻¹ (1000 PU)
 - \rightarrow O(20 ab⁻¹) over 25 years of operations
- Radiation levels:

parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E _{cm}	TeV	14	14	27	100
circumference	km	26.7	26.7	26.7	97.8
$\mathrm{peak} \; \mathcal{L} \; imes 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1	5	25	30
bunch spacing	ns	25	25	25	25
number of bunches		2808	2808	2808	10600
goal $\int \mathcal{L}$	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn	85	85	91	108
σ_{tot}	mbarn	111	111	126	153
BC rate	MHz	31.6	31.6	31.6	32.5
peak pp collision rate	GHz	0.85	4.25	22.8	32.4
peak av. PU events/BC		27	135	721	997
rms luminous region σ_z	mm	45	57	57	49
line PU density	$\rm mm^{-1}$	0.2	0.9	5	8.1
time PU density	$\rm ps^{-1}$	0.1	0.28	1.51	2.43
$dN_{ch}/d\eta _{\eta=0}$		7	7	8	9.6
charged tracks per collision N_{ch}		95	95	108	130
Rate of charged tracks	GHz	76	380	2500	4160
$< p_T >$	GeV/c	0.6	0.6	0.7	0.76
number of pp collisions $\times 10^{16}$		2.6	25	90	324
flux of charged particles at $r = 2.5 \mathrm{cm}$	GHz/cm^2	0.2	0.8	4.6	7.9
1 MeV-neq fluence $\times 10^{15}$ at r=2.5 cm	cm^{-2}	1	10	80	100
total ionizing dose at $r=2.5\mathrm{cm}$	MGy	1.45	14.6	59.3	253.5
$dE/d\eta _{\eta=0}$	GeV				13.6
$dE/d\eta _{\eta=5}$	GeV		.	.	670
$dP/d\eta _{\eta=5}$	kW				3.4

- pp cross-section from $14 \text{ TeV} \rightarrow 100 \text{ TeV}$ only grows by factor 2
- radiation level increase mostly driven by increase in inst. luminosity
- \rightarrow x10 more fluence compared to HL-LHC (x100 wrt to LHC)
 - Ex: calorimetry
 - I MeV-neq fluence \approx 4e15(14) cm⁻² in the Barrel for ECAL (HCAL)
 - I MeV-neq fluence \approx 2e16 cm⁻² in the EndCaps
- → Radiation hardness needed (especially forward!)

Physics requirements for calorimetry (low pT)

- Low pT physics produced at threshold (EWK, Higgs, top) is more forward:
 - need larger η coverage (up to $|\eta| = 6$) compared to LHC
 - and radiation hard detectors (important especially FWD)

 η

Physics requirements for calorimetry (low p_T)

- Low pT physics produced at threshold (EWK, Higgs, top) is more forward:
 - need larger η coverage (up to $|\eta| = 6$) compared to LHC
 - and radiation hard detectors (important especially FWD)
- Need excellent energy and angular resolution at low energy for precision physics (ex: HH $\rightarrow \chi \chi$ bb):
 - small noise and stochastic terms
 - robustness vs pile-up (noise)
 - π^0 rejection capabilities

$m_{YY}^2 = 2E_1E_2(1 - \cos\Delta\alpha)$

Physics requirements for calorimetry (low p_T)

- Low pT physics produced at threshold (EWK, Higgs, top) is more forward:
 - need larger η coverage (up to $|\eta| = 6$) compared to LHC
 - and radiation hard detectors (important especially FWD)
- Need excellent energy and angular resolution at low energy for precision physics (ex: HH $\rightarrow \chi \chi$ bb):
 - small noise and stochastic terms
 - robustness vs pile-up (noise)
 - π^0 rejection capabilities

- Need excellent lateral and longitudinal granularity
 - make particle-flow algorithms more effective
 - pointing capabilities (needed to trigger on $HH \rightarrow \chi \chi bb$)
 - helps with photon Id and PU rejection (PU jet Id)

Physics requirements for calorimetry (high pT)

The FCC-hh has sensitivity for (colored) hadronic resonances up to m=40 TeV, hence require:

• full containment for jets with $p_T = 20 \text{ TeV} \rightarrow \text{small constant term}$

Physics requirements for calorimetry (high p_T)

The FCC-hh has sensitivity for (colored) hadronic resonances up to m=40 TeV, hence require:

- full containment for jets with $p_T = 20 \text{ TeV} \rightarrow \text{small constant term}$
- limit punch throughs (and helps muon ld)
- assess requirements correctly drives detector size \Rightarrow magnet \Rightarrow cost

Physics requirements (high pT)

• The FCC-hh has sensitivity for (colored) hadronic resonances up to $m_R \approx 40$ TeV, hence require:

 \Rightarrow full containment for jets with $p_T = 20 \text{ TeV} \rightarrow \text{small constant term}$

- The FCC-hh has sensitivity for boosted resonances (ex: Z' \rightarrow tt or RSG \rightarrow WW) up to m_R \approx 20 TeV
 - ex: W jet with $p_T = 10 \text{ TeV} \rightarrow \Delta R = 0.02$ (typical ECAL cell size at CMS/ATLAS)
 - need very high granularity to resolve such substructure (to discriminate against plain QCD).
 - tracking can achieve such separation
 - target: 4x better transverse granularity wrt ATLAS/CMS detectors
 - do calorimeters have the capability to resolve such objects? Does granularity translate it translate to actual separation power? Combine longitudinal/lateral information)

The FCC-hh detector

Photon resolution with PU

Jet Performance with Full sim

- Excellent resolution up to p_T = 10 TeV !!
- Large impact of PU at low pT (as expected)
 - crucial for low mass di-jet resonances (again, such as HH→bbyy)
 - Further motivation for Particle-flow

→ since charged PU contribution can be easily subtracted (Charged Hadron Subtraction)

High Mass resonances

- Constant term drives jet energy resolution at high p_T
- Directly impacts sensitivity for excluding discovering narrow resonance high mass resonances Z' → j j
- Small impact on strongly coupled (wide) resonances

13

Jet Pile-Up identification

- With 200-1000PU, will get huge amount of fake-jets from PU combinatorics
- need both longitudinal/lateral segmentation for PU identification
- Simplistic observables show possible handles, pessimistic.. (in reality tracking will help a lot)

Jet substructure

- Performance good up to I TeV, with Calorimeter standalone, and without B field!
- Far from having explored everything possible:
 - Particle-Flow tracks and B field (decrease local occupancy) will improve
 - Machine Learning techniques will help a lot (train on 3D shower image)

Conclusion

Several Challenges for Calorimeters at the FCC-hh:

• $L = 30e34 \text{ cm}^{-2}\text{s}^{-1}$ imposes high radiation levels and high PU

→ radiation hardness is needed (especially in fwd region)

• 1000 PU is a hostile environment, also for calorimetry (impacts energy resolution)

 \rightarrow need help from tracking and timing

- → longitudinal/lateral segmentation is suitable for:
 - Photon Id, PU jet Identification
 - Particle-Flow algorithm
- Both precision physics (low pT) and New Physics (high pT) require excellent performance:
 - excellent angular and energy resolution
 - high segmentation, both longitudinally and laterally
- Next talk (A. Zaborowska) will discuss more specific aspects of technology and reconstruction. Stay tuned!

Trigger/data rates

HL-LHC

• rates:

- Calo + Muon : 20 Tb/s
- Tracker : 80 Tb/s
- ATLAS approach:
 - read out full Calo+Muon @40MHz (L0) (better muon standalone trigger?)
 - read the tracker @IMHz
- CMS approach:
 - read Calo+Muon + part of tracker (stubs) @40MHz as input to L1 trigger

FCC:

- rates:
 - Calo + Muon : 200-300 Tb/s
 - Tracker : 800 Tb/s
- Could be possible to read-out Calo+Muon @40MHz (200 Tb/s)
- Sounds hard to read full detector @ 40MHz (IPb/s)
- Calo+Muon alone will not provide enough selectivity for reading @IMHz \rightarrow need a track trigger

Di-Higgs - bbyy

assuming QCD can be measured from sidebands

Heavy resonances (RSG \rightarrow WW)

20

Supersymmetry (stop production)

Discovery potential (5σ)

- Multiple jets
- 2 b-jets
- On-shell top quarks
- Large ME_T [from the two LSPs]

