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The LHC Run-2 data taking conditions

Records breaking: collisions of protons at
√
s = 13 TeV + high instantaneous

luminosity + high pile-up
I Max Inst. Luminosity up to 2.14× 1034 cm−2s−1

I ≈ 100 fb−1 recorded so far by ATLAS
I High pile-up up to 80 interactions/bunch crossing (31.9 on average during Run-2)
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Month in Year
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More challenging conditions in the years to come and at the HL-LHC
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The ATLAS detector

I ATLAS is a multi-purpose physics experiment at the LHC
I It is build of different detector layers:

Tracker → electromagnetic calorimeters → Had. calorimeters → Muon spectrometer
I Designed to discover the Higgs boson and new physics
I Also dedicated to perform precise measurements of the Standard Model
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The Electromagnetic Calorimeters (LAr Calorimeters part 1)

I The EM LAr Calorimeter is divided into a barrel and two end-caps sections
I Sampling calorimeter with lead as passive material and argon as active material
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coverage
I presampler: |η|<1.8

(9K cells)
I barrel: |η|<1.475

(100k cells)
I end-caps: 1.375<|η|<3.2

(62k cells)

I Accordion shape for the passive material

⇒ good homogeneity
I 1 presampler + 3 layers in depth (up to |η| = 2.5)

⇒ allows to determine shower shapes and photon pointing 4 / 18



The Hadronic and forward calorimeters (LAr Calorimeters part 2)

Hadronic end-caps

I Coverage: 1.5<|η|<3.2
I passive material: copper plates
I 5.6k cells

Forward calorimeter
I Coverage: 3.1<|η|<4.9
I Honeycomb holes in copper/tungsten matrix
I Small gap of argon to avoid space charge effects
I 3.5k cells
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LAr Calorimeters simplified readout structure

Σ 
channels

Trigger 
towers

L1 Trigger

Buffer

Digitisation

Shaper

Front End Board (FEB)

E

T

HLT

DAQ
Computation :
Energy
Time position
Q-factor

Back end

Signal is amplified
the shaped with 3 gains
and sampled at 40MHz

4 samples are digitized
Optimal filtering method

computes energy, time position
and simplifed χ2

Channels are summed to create trigger towers
In barrel : 4(PS) + 32(L1) +16(L2) +8(L3)
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LAr Calorimeters as a central system in ATLAS

I LAr Calorimeters enter in the reconstruction of electrons, photons, Jets and transverse missing energy
I Both discovery channels (di-photons and 4 leptons) of Higgs boson used EM particles
I Evidence of H → bb̄ in 2017 strongly relied on the b jets invariant mass

EM energy deposits

Required:
I Good reliability of the LAr Calorimeters
I High precision on energy measurement
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Automatic tools development

I Smooth running achieved due to daily efforts of keeping the software running stably
I Automation of recovery procedures:

I LAr Trigger Tower Noise Killer (LTTNK)
⇒ Automatically finds noisy cells in a trigger tower and disables them.

LTTNK disables
cells of the tower 

one by one
and recheck the TT rate 

Until it finds the cell 
causing the noise 

In case of
 trigger tower

with too hight rates
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Data quality procedure

I Assess data quality in a sample of reconstructed data
(express processing)

⇒ Update condition database within 48h after data taking
I Full reconstruction start afterward.

In LAr Calorimeters: condition update used to

I Mask noisy cells

⇒ Energy computed by averaging the values from the
neighbours cells

I Define veto periods due to noisy events or corrupted
data

⇒ Vetoed events will not be used in analyses
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Two types of coherent noise
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I Large scale noise with high value of energy
measurement

I Burst of noisy events within few µs
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I Localized noise O(10) channels
I Single or burst of noisy event appearing every

minute

Coherent noise affects: the cell masking procedure
the cluster energy and create fake missing energy

No energy
deposits expected
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Treatment of noise bursts with event veto

Condition update 
at trigger level 
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Example of cleaning by event veto

I Events affected by coherent noise are time vetoed at the trigger level

⇒ Noisy event are already excluded from the express processing

⇒ Don’t affect the cell masking anymore
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Data quality efficiency in 2017

I Event vetoing allowed to reject only
0.03% of data

I For issues not treatable by event veto.

⇒ Minimum of 1 minute of data is rejected
I Loss of data: 0.62% (300 pb−1)
I Over the years: efficiency above 99%
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Improving the energy reconstruction

The computation of the energy uses several calibration constants and the predicted
physics pulse shape

I Constants are routinely monitored
I We keep improving the measurement with specific studies
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Pulse shape measurement
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I Measuring precisely the physics pulse shape allow to :

I Reduce our uncertainties on the shape correction
I Compute drift time of electrons in the argon:
⇒ It allows to estimate the argon gap size
⇒ Will improve the homogeneity corrections
I Improve the baseline corrections

I In 2016 4 sample recorded randomly around a single colliding bunch → probe the whole shape on average
I In 2017/18 events recorded with 32 digitized samples (instead of 4 in regular operation) separated by 25 ns
I Readout time was shifted in step of 3 ns to also measure the pulse between the usual sampling points

⇒ Now the pulse shape is measured in 256 time positions
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Baseline corrections

I With the bipolar shaping no average energy from pile-up is expected

⇒ Ideal situation only valid for infinite bunch trains
I Finite bunch trains length and bunch to bunch luminosity induce energy shifts

⇒ Corrected in the data processing
I Need also precise knowledge of the pulse shape to compute the corrections
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Energy scale and resolution measurement

I Energy scale derived with in-situ corrections from the Z mass

⇒ corrections precise only for electrons with pT ≈ 40 GeV : 0.1%
uncertainty

I Need to propagate uncertainties to higher/lower energy using:
I Layer inter-calibration
I Difference between high and medium gain
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Energy scale uncertainties

I Z invariant mass very stable with pile-up

⇒ Variation within 0.5 per mill
I Constant term of energy resolution

computed

⇒ Smearing of the Z mass resonance

⇒ Values below 1% in most of the barrel
(within the design value )
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Toward the Run-3

I Between 2019 and 2020 the trigger system based on the LAr Calorimeters will be upgraded (Phase 1)
I One purpose is to keep low energy thresholds for L1 trigger with a 20kHz maximum rate under high

pile-up conditions (µ = 80)
I Solution: improve the EM particles - jet differentiation
⇒ Increase the granularity on which the L1 trigger takes the decision (Trigger tower → Super Cells)
⇒ Super Cells signal is sampled and digitized at 40 MHz.

During the Run 2 a demonstrator using the upgraded system
was and is still running on parallel with the current trigger
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Thank you
Questions ?



BACKUP



1

2

-1

I For MET trigger the sum of energy should be 0
all the time in the detector

I Not the case in non infinite bunch train
I Pulse shape of energy deposit shaped to have 0

integral

BCID sum of energy in all cells total
1 1 1
2 1+2 3
3 1+2+1 4
4 1+2+1-1 3
5 1+2+1-1-1 2
6 1+2+1-1-1-1 1
7 1+2+1-1-1-1-1 0 18 / 18
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