Production and Quality Assurance of Mu2e Calorimeter CsI Crystals

Ren-Yuan Zhu

California Institute of Technology

May 22, 2018
Mu2e Calorimeter Collaboration

N. Atanov, V. Baranov, J. Budagov, Yu. I. Davydov, V. Glagolev, V. Tereshchenko, Z. Usubov
Joint Institute for Nuclear Research, Dubna, Russia

F. Cervelli, S. Di Falco, S. Donati, L. Morescalchi, E. Pedreschi, G. Pezzullo, F. Raffaelli, F. Spinella
INFN sezione di Pisa, Pisa, Italy

F. Colao, M. Cordelli, G. Corradi, E. Diociaiuti, R. Donghia, S. Giovannella, F. Happacher,
M. Martini, S. Miscetti, M. Ricci, A. Saputi, I. Sarra
Laboratori Nazionali di Frascati dell’ INFN, Frascati, Italy

B. Echenard, D. G. Hitlin, C. Hu, T. Miyashita, F. Porter, L. Zhang, R.-Y. Zhu*
California Institute of Technology, Pasadena, California, USA

F. Grancagnolo, G. Tassielli
INFN sezione di Lecce, Lecce, Italy

P. Murat
Fermi National Accelerator Laboratory, Batavia, Illinois, USA

See also presentations by L. Morescalchi, E. Diociaiuti & R. Donghia
The Mu2e CsI Calorimeter

1,348 undoped cesium iodide (CsI) crystals of 34×34×200 mm³ readout by a large area silicon photomultipliers (SiPM) array.

With a fast decay time of about 30 ns and a light output of more than 100 p.e./MeV measured by a bi-alkali PMT, un-doped CsI crystals provide a cost-effective solution for the Mu2e experiment.
Fast and Cost-Effective CsI

<table>
<thead>
<tr>
<th>Crystal</th>
<th>NaI(Tl)</th>
<th>CsI(Tl)</th>
<th>CsI</th>
<th>BaF₂</th>
<th>BGO</th>
<th>LYSO(Ce)</th>
<th>PWO</th>
<th>PbF₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm³)</td>
<td>3.67</td>
<td>4.51</td>
<td>4.51</td>
<td>4.89</td>
<td>7.13</td>
<td>7.40</td>
<td>8.3</td>
<td>7.77</td>
</tr>
<tr>
<td>Melting Point (ºC)</td>
<td>651</td>
<td>621</td>
<td>621</td>
<td>1280</td>
<td>1050</td>
<td>2050</td>
<td>1123</td>
<td>824</td>
</tr>
<tr>
<td>Radiation Length (cm)</td>
<td>2.59</td>
<td>1.86</td>
<td>1.86</td>
<td>2.03</td>
<td>1.12</td>
<td>1.14</td>
<td>0.89</td>
<td>0.93</td>
</tr>
<tr>
<td>Molière Radius (cm)</td>
<td>4.13</td>
<td>3.57</td>
<td>3.57</td>
<td>3.10</td>
<td>2.23</td>
<td>2.07</td>
<td>2.00</td>
<td>2.21</td>
</tr>
<tr>
<td>Interaction Length (cm)</td>
<td>42.9</td>
<td>39.3</td>
<td>39.3</td>
<td>30.7</td>
<td>22.8</td>
<td>20.9</td>
<td>20.7</td>
<td>21.0</td>
</tr>
<tr>
<td>Refractive Index a</td>
<td>1.85</td>
<td>1.79</td>
<td>1.95</td>
<td>1.50</td>
<td>2.15</td>
<td>1.82</td>
<td>2.20</td>
<td>1.82</td>
</tr>
<tr>
<td>Hygroscopicity</td>
<td>Yes</td>
<td>Slight</td>
<td>Slight</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Luminescence b (nm) (at peak)</td>
<td>410</td>
<td>550</td>
<td>310</td>
<td>300</td>
<td>480</td>
<td>402</td>
<td>425</td>
<td>420</td>
</tr>
<tr>
<td>Decay Time b (ns)</td>
<td>245</td>
<td>1220</td>
<td>26</td>
<td>650 0</td>
<td>300</td>
<td>40</td>
<td>30 10</td>
<td>?</td>
</tr>
<tr>
<td>Light Yield b,c (%)</td>
<td>100</td>
<td>165</td>
<td>3.7</td>
<td>36 4.1</td>
<td>21</td>
<td>85</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>d(LY)/dT b (%/ ºC)</td>
<td>-0.2</td>
<td>0.4</td>
<td>-1.4</td>
<td>-1.9 0.1</td>
<td>-0.9</td>
<td>-0.2</td>
<td>-2.5</td>
<td>?</td>
</tr>
<tr>
<td>Experiment</td>
<td>Crystal Ball</td>
<td>BaBar</td>
<td>BELLE</td>
<td>BES III</td>
<td>KTeV</td>
<td>BELLE Mu2e</td>
<td>(GEM) TAPS Mu2e-II</td>
<td>L3 BELLE</td>
</tr>
</tbody>
</table>

a. at peak of emission; b. up/lower row: slow/fast component; c. QE of readout device taken out.

May 22, 2018

Specifications defined according to physics requirements

- Crystal dimension tolerance: ±100 µm;
- Visual inspection: no cracks, chips, fingerprints, and free from inclusions and bubbles;
- Light output (LO) in 200 ns: > 100 p.e./MeV;
- FWHM Energy resolution for Na-22 peaks: < 45%;
- Light response uniformity (LRU): < 5%;
- Fast (200 ns)/Total (3,000 ns) (F/T) Ratio: > 75%;
- Radiation Induced Noise (RIN) @1.8 rad/h: < 0.6 MeV;
- Normalized LO after 10/100 krad > 85%/60%.

CsI transmittance is affected by its hygroscopic surface quality, so Mu2e specifications do not include a transmittance requirement.
36 Preproduction CsI Crystals

<table>
<thead>
<tr>
<th>Amcryx C0013</th>
<th>S-G C0045</th>
<th>SIC C0037</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amcryx C0015</td>
<td>S-G C0046</td>
<td>SIC C0038</td>
</tr>
<tr>
<td>Amcryx C0016</td>
<td>S-G C0048</td>
<td>SIC C0039</td>
</tr>
<tr>
<td>Amcryx C0019</td>
<td>S-G C0049</td>
<td>SIC C0040</td>
</tr>
<tr>
<td>Amcryx C0023</td>
<td>S-G C0051</td>
<td>SIC C0041</td>
</tr>
<tr>
<td>Amcryx C0025</td>
<td>S-G C0057</td>
<td>SIC C0042</td>
</tr>
<tr>
<td>Amcryx C0026</td>
<td>S-G C0058</td>
<td>SIC C0043</td>
</tr>
<tr>
<td>Amcryx C0027</td>
<td>S-G C0060</td>
<td>SIC C0068</td>
</tr>
<tr>
<td>Amcryx C0030</td>
<td>S-G C0062</td>
<td>SIC C0070</td>
</tr>
<tr>
<td>Amcryx C0032</td>
<td>S-G C0063</td>
<td>SIC C0071</td>
</tr>
<tr>
<td>Amcryx C0034</td>
<td>S-G C0065</td>
<td>SIC C0072</td>
</tr>
<tr>
<td>Amcryx C0036</td>
<td>S-G C0066</td>
<td>SIC C0073</td>
</tr>
</tbody>
</table>
A total of 72 preproduction CsI crystals were procured from three vendors: AMCRYS, Saint-Gobain (S-G) Corporation and Shanghai Institute of Ceramics (SIC), and were characterized at Caltech and LNF.

Following preproduction, two vendors were selected: S-G and SIC. Production has started: 52 and 100 crystals received from SIC and S-G as of May, 2018.

While dimension and scintillation properties are measured for all CsI crystals by CMM and automatized stations respectively, radiation hardness is measured for selected samples at Caltech and HZDR.
Crystals were wrapped with two layers of Tyvek paper of 150 μm with a selected end coupled to a bi-alkali PMT Hamamatsu R2059 via an air gap with the coupling end chosen to provide a better LRU.

Pulse height spectra were measured by using 0.511 MeV γ-rays from a 22Na source with a systematic uncertainty of about 1% for the peak determination.

The LO and FWHM resolution are defined as the average of seven points measured along the crystal length with 200 ns integration time.

The LRU is defined as the standard deviation (rms) of the seven points. The LO was also measured as a function of the integration time at the point of 2.5 cm from the PMT, from which the F/T ratio is determined.

The radiation induced photocurrent was measured as the anode current during irradiation at a dose rate of 2 rad/h, and was used to extract the crystal’s RIN at 1.8 rad/h. Radiation damage in both transmittance and LO was measured for two CsI crystals randomly selected from each vendor after 10 and 100 krad. In the photocurrent and LO measurements, crystals were with the same wrapping and air coupled to the same Hamamatsu R2059 PMT.
Typical PHS: Different Coupling End

May 22, 2018
Presented by Ren-Yuan Zhu of Caltech in 2018 Calor Conference at Eugene, Oregon
Light Output and Energy Resolution

All crystals satisfy these specification

- Amcrys CsI $34\times34\times200$ mm3
 - Average L.O. = 132 p.e./MeV
 - RMS/Ave = 9.8%

- Saint-Gobain CsI $34\times34\times200$ mm3
 - Average L.O. = 141 p.e./MeV
 - RMS/Ave = 5.0%

- SIC CsI $34\times34\times200$ mm3
 - Average L.O. = 155 p.e./MeV
 - RMS/Ave = 7.3%

- Amcrys CsI $34\times34\times200$ mm3
 - Average E.R. = 36%
 - RMS = 2.1%

- Saint_Gobain CsI $34\times34\times200$ mm3
 - Average E.R. = 33%
 - RMS = 1.4%

- SIC CsI $34\times34\times200$ mm3
 - Average E.R. = 33%
 - RMS = 1.1%
LRU and F/T Ratio

Some crystals fail LRU and F/T specifications

- Amcrys CsI $34 \times 34 \times 200 \text{ mm}^3$
 - Average E.R. = 2.23%
 - RMS = 0.7%

- Saint-Gobain CsI $34 \times 34 \times 200 \text{ mm}^3$
 - Average E.R. = 2.34%
 - RMS = 1.1%

- SIC CsI $34 \times 34 \times 200 \text{ mm}^3$
 - Average E.R. = 2.65%
 - RMS = 1.9%

- Amcrys CsI $34 \times 34 \times 200 \text{ mm}^3$
 - Average E.R. = 73.7%
 - RMS/Ave = 6.5%

- Saint-Gobain CsI $34 \times 34 \times 200 \text{ mm}^3$
 - Average E.R. = 97.6%
 - RMS/Ave = 2.0%

- SIC CsI $34 \times 34 \times 200 \text{ mm}^3$
 - Average E.R. = 90.3%
 - RMS/Ave = 5.1%
Radiation Induced Photocurrent

F is radiation induced photoelectron numbers per second, determined by the measured anode current in the PMT @ 2rad/h

\[
F = \frac{\text{Photocurrent}}{\text{Charge}_{\text{electron}} \times \text{Gain}_{\text{PMT}}}{\text{Dose rate}_{\gamma\text{-ray}} \text{ or } \text{Flux}_{\text{neutron}}}
\]

\[
\sigma = \frac{\sqrt{Q}}{LO} \quad \text{(MeV)}
\]
γ-ray Induced Readout Noise

Some Amcrys crystals fail RIN specification

<table>
<thead>
<tr>
<th>Crystal Type</th>
<th>Current (nA)</th>
<th>Before Irradiation</th>
<th>After Irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amcrys</td>
<td>0.070</td>
<td>1974</td>
<td>0.994</td>
</tr>
<tr>
<td>Saint-Gobain</td>
<td>0.016</td>
<td>166</td>
<td>0.031</td>
</tr>
<tr>
<td>SIC</td>
<td>0.024</td>
<td>454</td>
<td>0.145</td>
</tr>
</tbody>
</table>

Mu2e CsI 34×34×200 mm3

PMT: Hamamatsu R2059, HV = -700 V

Co, Gamma-ray Dose rate 2 rad/h

Highest Rad. Induced Cur. in Each Vendor

Amcrys Csl 34×34×200 mm3

Average E.R. = 0.623 MeV
RMS = 0.123 MeV

Saint-Gobain Csl 34×34×200 mm3

Average E.R. = 0.202 MeV
RMS = 0.012 MeV

SIC Csl 34×34×200 mm3

Average E.R. = 0.242 MeV
RMS = 0.053 MeV
Dark Current vs. γ-ray induced Current and F/T

Perfect correlation indicates possibility to measure only one
$^{137}\text{Cs } \gamma$-ray Irradiation Facility

5.4 krad/h at the center with 10% uniformity

5,400 rad/hr
Most crystals have LO more than 100 p.e./MeV after 100 krad irradiation promising a robust calorimeter.
CsI QA in SiDet at Fermilab

- Crystals dimension and shape measured by a CMM.
- Scintillation property and RIN measured by automatic stations.
- All crystals meet optical spec.
- Mechanical property greatly improved after communication with vendors.
Scintillation Test Station

Automatic measurement with four motors to test both a and b side couplings
Result of Scintillation Properties

90 crystals tested. One SIC crystal failing LRU. All crystals have F/T ratio > 86%
RIN Test Station

Automated RIN station installed @ FNAL allows to test 6 crystals at the same time

- 137Cs source
- Dose rate: 0.042 rad/h
- SiPMs
- Crystal drawer

- Crystals with final wrapping, best side coupled to readout
- 2 SiPMs/crystal. Tested also with PMT to compare with specs from producer
- Crystals at a distance of 2 cm from each other; source-crystals distance ~ 12 cm
- The source automatically stops at the center of each crystal while the current is readout
RIN value does not constitute a rejection criteria for crystal, but a parameter of preference. The goal is having a large number of crystals with RIN smaller than 0.6 MeV with PMT readout in a 200 ns gate, which should be scaled according to light collection and QE.
Summary

Mu2e CsI technical specifications are defined according to physics requirements.

Three vendors were chosen for preproduction, and S-G and SIC were chosen for production.

First batch of production crystals has been received. Automatized test stations are fully operational at Fermilab SiDet lab with QA procedure well defined.

All production crystals have excellent scintillation property.

Mechanical problem found in S-G crystals, which will be resolved after the visit to S-G last week.
Improving LO and F/T ratio improves energy resolution
LO Loss vs. Transmission Loss

\[EWLT = \frac{\int LT(\lambda) Em(\lambda)d\lambda}{\int Em(\lambda)d\lambda}. \]

Good correlation indicates that the LO variation can be corrected by measuring crystal’s transparency.

- Amcrys
- Saint-Gobain
- SIC

\[CC = 0.83 \]

\[\Delta_{EWLT} = 1.02 \times \Delta_{LO} \]