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STAR @ RHIC

» The Relativistic Heavy lon Collider at BNL provides a unique opportunity to study the
internal structure of nucleon, because it is the world’s only polarized proton collider.

» The Solenoidal Tracker At RHIC

» Electromagnetic Calorimetry : BEMC, EEMC, FMS
» 2008: Forward Meson Spectrometer(FMS) 2.6 <n<4.0

» TPC, Time-of-Flight, Muon detectors, Beam-Beam Counters, .....
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FMS

J Electromagnetic Calorimeter (FMS) made out of lead
glass.
 Non-projective
[ Ideal way to detect photons from n° — decays
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Shower shape fitting

x & y are distance from the cell to the photon candidate, L
G(x,y) represent energy deposition of this point to the cell e |
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Integral form of shower shape function, ais and bis are pre-defined parameters

[ By fitting the shower shape, one can determine the point position. The form
of the shower shape is shown above.

O Reconstruct ©° using combination of all points using

M, = V2 xEy x E; * (1 — cos(8))




Difficulties encountered
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Possible Explanations

M,y =2 * E; % E; * (1 — cos(8)) ~/E; xE, * 0 =Ewtal*\/1/2*(1—Z$y) * 0

P bl
WoOE +E,

= Collision vertex distribution

= Errors during data recording = Incident angle and shower

* Energy scale is biased by the

detect maximum
€ .ec o.r = parameterization of shower
=  Calibration N~

- DEREIEITON O GuElp pheLers = Algorithm of reconstruction

Since calibration is done via @ mass, all factors could also influence the
calibration which make it more complicated



Energy response of the detector
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Energy generated L
The amount of Cherenkov light loss varies " F Photon S e
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Opening angle

Longitudinal Vertex position:
Vertex information is provided by Beam-Beam Counters

35cm shift of the vertex ap#)roximately over/under-estimates the
opening angle by 5%. (7m from IR to FMS)

The wide distribution makes it important to account for it in the
calculation.
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Incident angle
Use the incident angle to create an asymmetric shower shape.
This gives a much better positioning of the FMS points

— Reduces possible bias, which could be as large as 1/5 of the cell width for
outer cells,

—> Suboptimal solution could contribute 3~4% to the opening angle.

Bias in symmetric shower shape: from simulation Photon
ks direction
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Algorithm & parameter
We found that a wider shower shape leads to smaller opening angles.

Right now the fitting parameters are extracted from a parameterized
shower shape from paper.

Athreeshowerslice
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,M(z,e) = 0.039 %/ ez/¥(e)

A. De Angelis (1988). Three-dimensional parametrization
of photon-initiated high energy showers.
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Result: ©° only simulation

Results after all corrections and improvements are applied

Test sample: 75GeV ©° at fixed position on FMS
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SImUIat|On fOr pp '\/Sz 500 Gev Pythia event generator
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Comparison between data and simulation
Resolution is worse in data. It ends up hitting

Result: 500 GeV p-p collision Data

the opening angle lower limit more, which
makes the spectrum more skewed in data.
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Summary

* The ° mass peak reconstructed by the STAR forward
electromagnetic calorimeter (FMS) is strongly energy-dependent.

* The following corrections and modifications have been
introduced in the w°reconstruction
* Collision vertex correction
* Non-linear energy correction
* Shower shape parameters and fitting process
* Shower shape form based on Incident angle

e Research has been done to understand the bias. After corrections
and modifications, both simulation and data sample show a
largely improved nt® mass peak.
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Backup




Adjusting the Dyy lower limit

Reconstruction Algorithm and its related parameter originally came from different detector, which
aimed at lower photon / n° energy region.

At high energy, where the opening angle is small, the old routine could fail.

The most important one is the fitting limit of the opening angle when fitting overlap photons.

Now simply use the half cell width as the lower limit.

M,, 75.0 GeV < E,, < 90.0 GeV, Fillg5315
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The 2nd fit

The 2nd fit originally is designed to get better precision of energy and position when fitting
overlap photons.

= Now it is also useful to smooth the bump caused by opening angle lower limit.
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= During the 2nd fit, the energy of each fitted photon has to be fixed.
Due to imperfections in the cell weighting (considerably too high weight for low energy
cells), the fit is biased to increase the total energy to get a lower chi®2.
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