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Challenges of HL-LHC for L1 trigger

T. Strebler – CMS HGCAL trigger – CALOR 2018

• Significant changes in LHC conditions for Phase 2:
- increase in luminosity by up to a factor 4
- interactions per bunch crossing (pile-up) up to 200

• Very challenging conditions for L1 trigger:
- high occupancy in the detector
- higher rates
- higher radiation dose

• CMS physics programme for HL-LHC includes study of rare electroweak processes 
=> Phase-1 trigger thresholds must be maintained
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Changes in CMS L1 trigger and endcaps for HL-LHC

see A. Zabi’s talk

• CMS L1 trigger upgrade phase 2:
- increased bandwidth (750 kHz)
- increased latency (12.5 μs)

• New track trigger primitives => Particle-Flow algorithm 
at L1 trigger

• Good position resolution and shower 
separation of the calorimeter trigger 
primitives needed for track-cluster 
matching

• L1 tracks only up to |η|=2.4, standalone 
cluster needed for 2.4<|η|<3.0

• Brand new endcap detectors based on high-granularity calorimetry 
= HGCAL

- better radiation-hardness
- better granularity
- new longitudinal information to be exploited
- 6M readout channels over 52 layers
=> huge data volume!

T. Strebler – CMS HGCAL trigger – CALOR 2018



 4

HGCAL trigger: on- and off-detector processing

• Reduction of data-flow to send 
off-detector at 40 MHz in front-
end ASICS

• Kept simple to:
- minimise power consumption
- maximise flexibility

• More involved processing to be done in off-detector FPGAs:
- Stage 1: 2D clustering layer by layer
- Stage 2 (Time-Multiplexed Trigger architecture): 3D objects built combining 2D objects 

along longitudinal direction

• Trigger primitives sent to central Level 1 trigger:
- 3D clusters, including position, energy and topological variables
- projective energy map to evaluate unclustered energy

T. Strebler – CMS HGCAL trigger – CALOR 2018
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HGCAL front-end for data-flow  reduction

• Half of EM layers used for triggering

• Trigger cells (TCs) built by summing energy from 
2x2 or 3x3 neighbouring sensor cells (~4.5 cm2)

• Threshold applied before sending TCs to back-end

• Energy sums of all TCs covered by one read-out 
chip (~36 cm2) also sent

Energy 
sums

T. Strebler – CMS HGCAL trigger – CALOR 2018
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Clustering in the back-end: implementation
• 2D dynamic clustering performed layer by layer (Stage 1):

- inspired by good performance of Phase 1 L1 calorimeter trigger
- nearest neighbour clustering around seed TCs
- topological variables computed for background discrimination

• 3D clusters built by combining 2D clusters (Stage 2):
- new longitudinal dimension to be exploited
- several approaches under study (cone-based, likelihood-

based…)
- additional discrimination variables computed
- weighted energy sum to define 3D cluster energy

• Different energy reconstruction strategies could be considered for different kinds of 
clusters

T. Strebler – CMS HGCAL trigger – CALOR 2018

Calibration coefficients 
per layer
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• Various thresholds used in the different clustering steps to:
- limit impact of electronic noise and pile-up
- keep the number of objects produced within bandwidth constraints

• Effect on response corrected with cluster calibration

• Impact on resolution of hadronic objects could be recovered by combining information 
from energy sums

ET>0.5 GeV
ET>1 GeV
ET>2 GeV
ET>3 GeV

T. Strebler – CMS HGCAL trigger – CALOR 2018

Clustering in the back-end: impact of thresholds



 8

Object performance: e/𝜸 ID
• Calorimeter-only trigger object reconstruction developed to estimate impact of trigger 

primitive generation steps
=> final trigger performance will also benefit from L1 track information in central L1 trigger
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• Electrons and photons = single 3D 
cluster

• I D v a r i a b l e s u s e d t o r e j e c t 
background:

- First layer
- Layer with max energy
- Consecutive shower length
- Transverse width in radial direction

• Combined in a BDT used to define 
ID working points

• Will be complemented with tracking 
ID variables in central L1 trigger where 
possible

T. Strebler – CMS HGCAL trigger – CALOR 2018
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Object performance: e/𝜸 resolution, efficiency and rate

• Overall good performance 
for HGCAL trigger for 
electromagnetic objects:

- good resolution
- high plateau efficiency

PU200
ET(L1)>30 GeV
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• Sizeable rate reduction obtained thanks to electron 
ID criteria

• Rate increase from PU 140 to 200 kept under 
control by limiting the size of 2D clusters

T. Strebler – CMS HGCAL trigger – CALOR 2018

~10% at 30 GeV

Ef f .>95% 
at 45 GeV
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Object performance: jet pile-up subtraction and calibration

• Jet reconstruction in the endcaps will be 
essential to study VBF/VBS processes during 
Phase 2

• Jets built from 3D clusters using anti-kT 
algorithm with ΔR=0.2: small cone size to limit 
impact of PU

• Energy corrections:
- η-dependent pile-up subtraction (=PUS)
- pT-dependent calibration used to correct energy 

scale wrt anti-kT ΔR=0.4 jets

T. Strebler – CMS HGCAL trigger – CALOR 2018

Estimated PU contamination in L1 jets
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Object performance: jet efficiency and rate
• Overall good performance of single and double jet triggers: limited impact of PU

• Longitudinal and transverse information expected to further improve PU rejection

• Large improvement of jet trigger performance also expected to come from Particle-Flow at 
Level 1 implementation

• Topological requirements can be exploited to significantly reduce the rates
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Conclusion

• HL-LHC conditions will represent a major challenge for the CMS trigger system

• New HGCAL detector presents important challenges in terms of trigger data bandwidth 
and processing
=> developing effective data reduction strategy with limited impact on physics

• A lot of new opportunities to be exploited for trigger object reconstruction: 
- new longitudinal information to be used for PU mitigation and rate reduction
- fine granularity to be exploited for correlations with other subdetectors

• HGCAL trigger object performance very promising: 
very useful to assess impact of choices regarding the HGCAL trigger primitive generation

T. Strebler – CMS HGCAL trigger – CALOR 2018
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Back-up

T. Strebler – CMS HGCAL trigger – CALOR 2018
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Back-end TPG hardware
• Trigger primitive generation requires boards with high 

I/O + significant processing power

• Generic boards developed for whole CMS trigger + 
DAQ systems:

- ATCA format
- 96 I/O links up to 16 or 25 Gb/s
- Ultrascale+ FPGA(s) for processing

• Stage 1: 0.5 to 2 boards per layer

• Stage 1 to Stage 2 transmission x24 time multiplexed: 
all data from one endcap to be processed by one single 
FPGA

• Firmware implementation and software developments 
of trigger algorithm closely follow each other CMS Serenity board

T. Strebler – CMS HGCAL trigger – CALOR 2018
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Back-end data format

T. Strebler – CMS HGCAL trigger – CALOR 2018
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Impact of cluster size restriction
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• Early versions of the 2D 
clustering did not include 
size restriction of the 
clusters
=> large rate of large 
high-energy clusters at 
high η due to high PU 
activity

• Improved in later versions

SingleEG SingleEG

No cluster size restriction W/ cluster size restriction
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Object performance: jets
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• Response

• Resolution
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Object performance: hadronic taus
• Hadronic tau decays important for Higgs physics in 

LHC Phase 2: VBF production, double Higgs 
production…

• Good trigger performance already achieved with 
simple adaptation of jet

• Reconstruction of individual calorimeter clusters combined with tracks to be exploited:
- in dedicated reconstruction of individual hadronic tau decay modes
- in definition of PU resilient isolation criteria

T. Strebler – CMS HGCAL trigger – CALOR 2018
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Object performance: hadronic taus

• Response

• Resolution

T. Strebler – CMS HGCAL trigger – CALOR 2018
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Object performance: hadronic taus
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