Design and object performance of the CMS High Granularity Calorimeter Level 1 trigger

Thomas Strebler

On behalf of the CMS collaboration

See N. Akchurin's talk for an overview of the CMS HGCAL upgrade

> CALOR 2018 conference May 23rd, 2018

Imperial College London

Challenges of HL-LHC for L1 trigger

- Significant changes in LHC conditions for Phase 2:
 - increase in luminosity by up to a factor 4
 - interactions per bunch crossing (pile-up) up to 200
- Very challenging conditions for L1 trigger:
 - high occupancy in the detector
 - higher rates
 - higher radiation dose
- CMS physics programme for HL-LHC includes study of rare electroweak processes
 => Phase-1 trigger thresholds must be maintained

Changes in CMS L1 trigger and endcaps for HL-LHC

- Brand new endcap detectors based on high-granularity calorimetry = HGCAL
 - better radiation-hardness
 - better granularity
 - new longitudinal information to be exploited
 - 6M readout channels over 52 layers
 - => huge data volume!
- CMS L1 trigger upgrade phase 2:
 - increased bandwidth (750 kHz)
 - increased latency (12.5 μs)
- New track trigger primitives => Particle-Flow algorithm at L1 trigger

 Good position resolution and shower separation of the calorimeter trigger primitives needed for track-cluster matching

~2m

CE.E

 L1 tracks only up to lηl=2.4, standalone cluster needed for 2.4<lηl<3.0

see A. Zabi's talk

HGCAL trigger: on- and off-detector processing

- Stage 1 Stage 2 Reduction of data-flow to send off-detector at 40 MHz in frontelectronics 14 CE-E layers 28 boards 끮 24 CE-H layers ~4000 links 2304 links 24 boards 288 links 40 Tbit/s 20 boards 20 Tbit/s 2 Tbit/s
- Kept simple to: ٠

end ASICS

٠

- minimise power consumption
- maximise flexibility

- More involved processing to be done in off-detector FPGAs: ٠
 - Stage 1: 2D clustering layer by layer
 - Stage 2 (Time-Multiplexed Trigger architecture): 3D objects built combining 2D objects along longitudinal direction
- Trigger primitives sent to central Level 1 trigger:
 - 3D clusters, including position, energy and topological variables
 - projective energy map to evaluate unclustered energy

HGCAL front-end for data-flow reduction

- Half of EM layers used for triggering
- **Trigger cells** (TCs) built by summing energy from 2x2 or 3x3 neighbouring sensor cells (~4.5 cm²)
- Threshold applied before sending TCs to back-end
- Energy sums of all TCs covered by one read-out chip (~36 cm²) also sent

Clustering in the back-end: implementation

- 2D dynamic clustering performed layer by layer (Stage 1):
 - inspired by good performance of Phase 1 L1 calorimeter trigger
 - nearest neighbour clustering around seed TCs
 - topological variables computed for background discrimination
- 3D clusters built by combining 2D clusters (Stage 2):
 - new longitudinal dimension to be exploited
 - several approaches under study (cone-based, likelihoodbased...)
 - additional discrimination variables computed
 - weighted energy sum to define 3D cluster energy

 Different energy reconstruction strategies could be considered for different kinds of clusters

Clustering in the back-end: impact of thresholds

Various thresholds used in the different clustering steps to:

- limit impact of electronic noise and pile-up
- keep the number of objects produced within bandwidth constraints
- Effect on response corrected with cluster calibration
- Impact on resolution of hadronic objects could be recovered by combining information from energy sums

Object performance: e/γ ID

Calorimeter-only trigger object reconstruction developed to estimate impact of trigger primitive generation steps

=> final trigger performance will also benefit from L1 track information in central L1 trigger

- Electrons and photons = single 3D cluster
- ID variables used to reject background:
 - First layer
 - Layer with max energy
 - Consecutive shower length
 - Transverse width in radial direction
- Combined in a BDT used to define ID working points
- Will be **complemented with tracking ID** variables in central L1 trigger where possible

Object performance: e/γ resolution, efficiency and rate

Object performance: jet pile-up subtraction and calibration

- Jet reconstruction in the endcaps will be essential to study VBF/VBS processes during Phase 2
- Jets built from 3D clusters using anti-kT algorithm with ΔR=0.2: small cone size to limit impact of PU

Energy corrections:

- η-dependent pile-up subtraction (=PUS)
- pT-dependent calibration used to correct energy scale wrt anti-kT ΔR=0.4 jets

T. Strebler – CMS HGCAL trigger – CALOR 2018

Object performance: jet efficiency and rate

- Overall good performance of single and double jet triggers: limited impact of PU
- Longitudinal and transverse information expected to further improve PU rejection
- Large improvement of jet trigger performance also expected to come from Particle-Flow at Level 1 implementation
- Topological requirements can be exploited to significantly reduce the rates

- HL-LHC conditions will represent a major challenge for the CMS trigger system
- New HGCAL detector presents important challenges in terms of trigger data bandwidth and processing
 => developing effective data reduction strategy with limited impact on physics
- A lot of new opportunities to be exploited for trigger object reconstruction:
 - new longitudinal information to be used for PU mitigation and rate reduction
 - fine granularity to be exploited for correlations with other subdetectors
- HGCAL trigger object performance very promising:

very useful to assess impact of choices regarding the HGCAL trigger primitive generation

Back-end TPG hardware

- Trigger primitive generation requires boards with high
 I/O + significant processing power
- Generic boards developed for whole CMS trigger + DAQ systems:
 - ATCA format
 - 96 I/O links up to 16 or 25 Gb/s
 - Ultrascale+ FPGA(s) for processing
- Stage 1: 0.5 to 2 boards per layer
- Stage 1 to Stage 2 transmission x24 time multiplexed: all data from one endcap to be processed by one single FPGA
- Firmware implementation and software developments of trigger algorithm closely follow each other

CMS Serenity board

Back-end data format

Table 8.1: Concept for the layer header data sent from Stage 1 to Stage 2.

Quantities	Bits	Total bits
Total transverse energy, BX number, number of 2D clusters	16, 8, 8	32
Energy map 15 $(\eta) \times 72 (\phi)$	12	12960
Total		12 992

Table 8.2: Concept for data per 2D cluster sent from Stage 1 to Stage 2.

Quantities	Bits	Total bits
x, y , transverse $E_{\rm T}$	12, 12, 8	32
Number of cells and local maxima, size in <i>x</i> and <i>y</i> , quality flags	8, 2, 8, 8, 6	32
Minimum total		64
Optional local maximum 0 Δx , Δy , normalised $E_{\rm T}$	8, 8, 8	24
Optional local maximum 1 Δx , Δy , normalised $E_{\rm T}$	8, 8, 8	24
Optional local maximum 2 Δx , Δy , normalised $E_{\rm T}$	8, 8, 8	24
Optional local maximum 3 Δx , Δy , normalised $E_{\rm T}$	8, 8, 8	24
Maximum total		160

Table 8.3: Concept for the header data sent to the central L1T correlator per BX.

Quantities	Bits	Total bits
Total energy, BX number, number of clusters	16, 8, 8	32
Energy map 15 (η) ×72 (ϕ)	16	17280
Total		17312

Impact of cluster size restriction

clusters

activity

Object performance: jets

Object performance: hadronic taus

 Hadronic tau decays important for Higgs physics in LHC Phase 2: VBF production, double Higgs production...

- Good trigger performance already achieved with simple adaptation of jet
- Reconstruction of individual calorimeter clusters combined with tracks to be exploited:
 - in dedicated reconstruction of individual hadronic tau decay modes
 - in definition of PU resilient isolation criteria

Object performance: hadronic taus

Object performance: hadronic taus

