Design and object performance of the CMS High Granularity Calorimeter Level 1 trigger

Thomas Strebler

On behalf of the CMS collaboration

See N. Akchurin’s talk for an overview of the CMS HGCAL upgrade

CALOR 2018 conference
May 23rd, 2018
Challenges of HL-LHC for L1 trigger

- **Significant changes in LHC conditions for Phase 2:**
 - increase in luminosity by up to a factor 4
 - interactions per bunch crossing (pile-up) up to 200

- **Very challenging conditions for L1 trigger:**
 - high occupancy in the detector
 - higher rates
 - higher radiation dose

- CMS physics programme for HL-LHC includes study of rare electroweak processes
 \[\Rightarrow\] **Phase-1 trigger thresholds must be maintained**
Changes in CMS L1 trigger and endcaps for HL-LHC

- Brand new endcap detectors based on high-granularity calorimetry = HGCAL
 - better radiation-hardness
 - better granularity
 - new longitudinal information to be exploited
 - 6M readout channels over 52 layers
 => huge data volume!

- CMS L1 trigger upgrade phase 2:
 - increased bandwidth (750 kHz)
 - increased latency (12.5 μs)

- New track trigger primitives => Particle-Flow algorithm at L1 trigger

- Good position resolution and shower separation of the calorimeter trigger primitives needed for track-cluster matching

- L1 tracks only up to |η|=2.4, standalone cluster needed for 2.4<|η|<3.0

see A. Zabi’s talk
HGCAL trigger: on- and off-detector processing

• Reduction of data-flow to send off-detector at 40 MHz in front-end ASICS

• Kept simple to:
 - minimise power consumption
 - maximise flexibility

• More involved processing to be done in off-detector FPGAs:
 - Stage 1: 2D clustering layer by layer
 - Stage 2 (Time-Multiplexed Trigger architecture): 3D objects built combining 2D objects along longitudinal direction

• Trigger primitives sent to central Level 1 trigger:
 - 3D clusters, including position, energy and topological variables
 - projective energy map to evaluate unclustered energy
HGCAL front-end for data-flow reduction

- **Sensor cells**
- **Trigger cells**
- **Trigger cells over threshold**

- **Half of EM layers** used for triggering

- **Trigger cells** (TCs) built by summing energy from 2x2 or 3x3 neighbouring sensor cells (~4.5 cm²)

- **Threshold** applied before sending TCs to back-end

- **Energy sums of all TCs covered by one read-out chip** (~36 cm²) also sent
Clustering in the back-end: implementation

- **2D dynamic clustering performed layer by layer** (Stage 1):
 - inspired by good performance of Phase 1 L1 calorimeter trigger
 - nearest neighbour clustering around seed TCs
 - topological variables computed for background discrimination

- **3D clusters built by combining 2D clusters** (Stage 2):
 - new longitudinal dimension to be exploited
 - several approaches under study (cone-based, likelihood-based…)
 - additional discrimination variables computed
 - weighted energy sum to define 3D cluster energy

- Different energy reconstruction strategies could be considered for different kinds of clusters
Clustering in the back-end: impact of thresholds

- Various thresholds used in the different clustering steps to:
 - limit impact of electronic noise and pile-up
 - keep the number of objects produced within bandwidth constraints

- Effect on response corrected with cluster calibration

- Impact on resolution of hadronic objects could be recovered by combining information from energy sums

HGCal Simulation

- Number of 2D-clusters
- Max. allowed in bandwidth

Number of 3D-clusters out of trigger Layer-2

- ET>0.5 GeV
- ET>1 GeV
- ET>2 GeV
- ET>3 GeV

T. Strebler – CMS HGCAL trigger – CALOR 2018
Object performance: e/γ ID

- Calorimeter-only trigger object reconstruction developed to estimate impact of trigger primitive generation steps
 => final trigger performance will also benefit from L1 track information in central L1 trigger

- Electrons and photons = single 3D cluster

- ID variables used to reject background:
 - First layer
 - Layer with max energy
 - Consecutive shower length
 - Transverse width in radial direction

- Combined in a BDT used to define ID working points

- Will be complemented with tracking ID variables in central L1 trigger where possible
Object performance: e/γ resolution, efficiency and rate

- Overall good performance for HGCAL trigger for electromagnetic objects:
 - good resolution
 - high plateau efficiency

- Sizeable rate reduction obtained thanks to electron ID criteria

- Rate increase from PU 140 to 200 kept under control by limiting the size of 2D clusters
Object performance: jet pile-up subtraction and calibration

- Jet reconstruction in the endcaps will be essential to study VBF/VBS processes during Phase 2

- Jets built from 3D clusters using anti-kT algorithm with $\Delta R=0.2$: small cone size to limit impact of PU

- Energy corrections:
 - η-dependent pile-up subtraction (=PUS)
 - p_T-dependent calibration used to correct energy scale wrt anti-kT $\Delta R=0.4$ jets

Estimated PU contamination in L1 jets
Object performance: jet efficiency and rate

- Overall good performance of single and double jet triggers: **limited impact of PU**

- **Longitudinal and transverse information** expected to further improve **PU rejection**

- Large improvement of jet trigger performance also expected to come from **Particle-Flow at Level 1 implementation**

- **Topological requirements** can be exploited to significantly reduce the rates
Conclusion

• HL-LHC conditions will represent a major challenge for the CMS trigger system

• New HGCAL detector presents **important challenges** in terms of **trigger data bandwidth and processing**
 => developing effective data reduction strategy with limited impact on physics

• A lot of new opportunities to be exploited for trigger object reconstruction:
 - new longitudinal information to be used for PU mitigation and rate reduction
 - fine granularity to be exploited for correlations with other subdetectors

• **HGCAL trigger object performance very promising:**
 very useful to assess impact of choices regarding the HGCAL trigger primitive generation
Back-up
Back-end TPG hardware

- Trigger primitive generation requires boards with high I/O + significant processing power

- Generic boards developed for whole CMS trigger + DAQ systems:
 - ATCA format
 - 96 I/O links up to 16 or 25 Gb/s
 - Ultrascale+ FPGA(s) for processing

- **Stage 1**: 0.5 to 2 boards per layer

- **Stage 1 to Stage 2 transmission x24 time multiplexed**: all data from one endcap to be processed by one single FPGA

- Firmware implementation and software developments of trigger algorithm closely follow each other

CMS Serenity board

![CMS Serenity board](image)

RAW, **FW**, and **SW** graphs illustrate the data processing stages.
Table 8.1: Concept for the layer header data sent from Stage 1 to Stage 2.

<table>
<thead>
<tr>
<th>Quantities</th>
<th>Bits</th>
<th>Total bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total transverse energy, BX number, number of 2D clusters</td>
<td>16, 8, 8</td>
<td>32</td>
</tr>
<tr>
<td>Energy map 15 (η) \times 72 (ϕ)</td>
<td>12</td>
<td>12960</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12992</td>
</tr>
</tbody>
</table>

Table 8.2: Concept for data per 2D cluster sent from Stage 1 to Stage 2.

<table>
<thead>
<tr>
<th>Quantities</th>
<th>Bits</th>
<th>Total bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, transverse E_T</td>
<td>12, 12, 8</td>
<td>32</td>
</tr>
<tr>
<td>Number of cells and local maxima, size in x and y, quality flags</td>
<td>8, 2, 8, 8, 6</td>
<td>32</td>
</tr>
<tr>
<td>Minimum total</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Optional local maximum 0 Δx, Δy, normalised E_T</td>
<td>8, 8, 8</td>
<td>24</td>
</tr>
<tr>
<td>Optional local maximum 1 Δx, Δy, normalised E_T</td>
<td>8, 8, 8</td>
<td>24</td>
</tr>
<tr>
<td>Optional local maximum 2 Δx, Δy, normalised E_T</td>
<td>8, 8, 8</td>
<td>24</td>
</tr>
<tr>
<td>Optional local maximum 3 Δx, Δy, normalised E_T</td>
<td>8, 8, 8</td>
<td>24</td>
</tr>
<tr>
<td>Maximum total</td>
<td></td>
<td>160</td>
</tr>
</tbody>
</table>

Table 8.3: Concept for the header data sent to the central L1T correlator per BX.

<table>
<thead>
<tr>
<th>Quantities</th>
<th>Bits</th>
<th>Total bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total energy, BX number, number of clusters</td>
<td>16, 8, 8</td>
<td>32</td>
</tr>
<tr>
<td>Energy map 15 (η) \times 72 (ϕ)</td>
<td>16</td>
<td>17280</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17312</td>
</tr>
</tbody>
</table>
Impact of cluster size restriction

- Early versions of the 2D clustering did not include size restriction of the clusters
 => large rate of large high-energy clusters at high η due to high PU activity
- Improved in later versions

T. Strebler – CMS HGCAL trigger – CALOR 2018
Object performance: jets

- Response

- Resolution
Object performance: hadronic taus

• Hadronic tau decays important for Higgs physics in LHC Phase 2: VBF production, double Higgs production…

• Good trigger performance already achieved with simple adaptation of jet

• Reconstruction of individual calorimeter clusters combined with tracks to be exploited:
 - in dedicated reconstruction of individual hadronic tau decay modes
 - in definition of PU resilient isolation criteria
Object performance: hadronic taus

- Response

- Resolution
Object performance: hadronic taus

SingleJet

SingleTau