Study on Calorimeter for CEPC

Tao Hu

Institute of High Physics, CAS

On Behalf of CEPC Calorimeter Working Group

Eugene, 2018-5-25

The CEPC Program

Accelerator Parameters	Higgs	W	Z (3T)	Z (2T)
Number of IPs	2			
Beam energy (GeV)	120	80	45.5	
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+10%gap)	
Lifetime (hour)	0.67	1.4	4.0	2.1
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1

Current main focus

CEPC: Electron-positron collisions at 91, 160, and 240 GeV) Higgs factory (106 Higgs)

- Precision study of Higgs (m_H, couplings)
- Looking for hints of new physics
 - Higgs rare decays
- · Similar & complementary to ILC

Z and W factory $(10^{11} Z^0)$

 $L (@ Z pole) > 16 \times 10^{34} cm^{-2}s^{-1}$

- · Precision test of SM
- Search for rare decays

Flavor factory: b, c, τ and QCD studies

CEPC "optimistic" Schedule

Conceptual Design Report (CDR) - Status

Pre-CDR completed in 2015

- No show-stoppers
- Technical challenges identified → R&D issues

(http://cepc.ihep.ac.cn/preCDR/volume.html)

Detector and Physics - Conceptual Design Report (CDR)

- Goal: A working concept on paper, including alternatives
- October 2018: Planned release date
 - Soon after CEPC accelerator CDR is released
 - Delays to accommodate new accelerator design parameters and solenoid magnetic field
- Still
 - * Plenty of opportunities for people to contribute
 - * Lots of room to make a serious impact
- Weekly meetings:
 - * https://indico.ihep.ac.cn/category/324/

EP-CEPC-DR-2018XX IHEP-EP-2018XX IHEP-TH-2018XX

CEPC

Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group Fall 2018

Detector Conceptual Designs (CDR)

Baseline detector (3 Tesla)
ILD-like
(similar to pre-CDR)

Low magnetic field concept (2 Tesla)

Full silicon tracker concept

Final two detectors likely to be a mix and match of different options

CEPC baseline detector: ILD-like

Major concerns being addressed

- 1. MDI region highly constrained
 L* increased to 2.2 m
 Compensating magnets
- 2. Low-material Inner Tracker design
- 3. TPC as tracker in high-luminosity Z-pole scenario
 - 4. ECAL/HCAL granularity needs
 Passive versus active cooling

Magnetic Field: 3 Tesla — changed from preCDR

- •Impact parameter resolution: less than 5 µm
- •Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV-1)
- Jet energy resolution: $\sigma_{\rm F}/{\rm E} \sim 30\%/\sqrt{\rm E}$

Flavor tagging

BR(Higgs → µµ)

W/Z dijet mass separation

Low magnetic field detector concept

Proposed by INFN, Italy colleagues

Similar to Concept Detector for CLIC

Open for collaboration within China

Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~0.8 X₀)

Vertex: Similar to CEPC default

Drift chamber: 4 m long; Radius ~30-200 cm

Preshower: ~1 X₀

Dual-readout calorimeter: 2 m/8 λ_{int}

(yoke) muon chambers

Integrated into Conceptual Design Report

Dual readout calorimeter: Chapter 5

Drift chamber: Chapter 4

Muon detector (µRwell): Chapter 7

CEPC Calorimeter Options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and IHEP seed funding

Electromagnetic

ECAL with Silicon and Tungsten (LLR, France)

(*) ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

Hadronic

(*) SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France)
SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC)

(*) HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

New

(*) Dual readout calorimeters (INFN, Italy + Iowa, USA)

Optimization of Scintillator-tungsten ECAL

- Simulation and optimization of the structure and geometry to determine the key parameters
 - Total Thickness of the absorber: 80~90mm
 - Layer number: 25
 - Granularity: 5mm × 5mm
 - Thickness of the scintillator: 2mm

Design of scintillator module

- Scintillator strip module is designed as strip wrapped with enhanced specular reflector (ESR)
- Scintillator dimension: 5mm×45mm×2mm
- Cross arrangement of neighboring layers → a transverse readout cell size of 5×5 mm²
- Reduction of the readout channels → low cost
- SiPM coupled at the side or the bottom of the scintillator strip → few or negligible dead area

Light output and uniformity test

Typical output with SiPM (Hamamatsu S12571-025P or 010P) coupled at the side of the scintillator

 Light output is non-uniformity along the length of the scintillator, degrades the energy resolution

Need to be optimized

Energy reconstruction of vvHiggs→ γγ

Module optimization (reflective layer)

Strip with rough reflective surfaces

Strip wrapped with different reflective layer

- Rough reflective surfaces vs. polished surfaces
- Diffuse reflective layer vs. ESR
- Slightly improve the uniformity, but not good enough.

Module optimization (SiPM coupling mode)

- SiPM (Hamamatsu S12571-010P)embedded at side-end of the strip or the bottom-end of the strip
- Uniformity of light output is not improved

Module optimization (SiPM coupling mode)

- SiPM embedded at bottom-center of the strip
- Uniformity of light output is improved significantly

SiPM bottom-center embedded coupling

SiPM bottom-center embedded coupling mode will be adopted in the construction of the ScW ECAL prototype

- Improve the uniformity → The non-uniformity can reach about 10%
- No gap between the scintillators → Avoid the dead area
- Easy to operation in the prototype construction
- Can use SiPM with larger dimension and more pixels to extend the dynamic range of the SiPM

Electronics Development

System schematic

SOHOAL DAR Ver

FEB

DIF

- Asic board is developed with SPIROC2b chip, which performs amplification, auto-triggering, digitization and zero-suppression
- DIF initializes chips and collects data
- USB for data upload & commands sending
- USB for single DIF, and serial port for DAQ when using multiple DIF
- ✓ The electronics works with good performance
- Switched capacitor array store charge measurement
- 12 bits ADC conversion
- Variable Gain due to:
 - adjustable Cf of pre-amplifer
 - Rload on the board
 - Shaping time and delay

Preparation for single layer prototype

Scintillator strips are incised and wrapped in the SIC (Shanghai Institute of Ceramics)

- Single layer prototype for the study of module layout, integration, preliminary performance
- Includes 144 scintillator modules (5mm×45mm×2mm) with S12571-010P SiPMs
- Half are side-end coupling mode, another half are bottom-center embedded coupling mode

Optimization of HCAL Layers

 $(0.12\lambda_I, 1.14X_0)$

Stainless steel Absorber(15mm)

Stainless steel wall(2.5mm) $GRPC(6mm \approx 0 \lambda_I, X_0)$ Stainless steel wall(2.5mm)

- →SDHCAL has 48 layers which aims for ILC Detector
- 6mm RPC+20mm absorber
- → Optimization no. of layers for CEPC at 240GeV
- → 40-layer SDHCAL yields decent energy resolution.

DHCAL based on GEM

Typical parameters

Cu: $t = 5\mu m$ Kapton: $T = 50\mu m$ Diameter: $d = 60\mu m$

 $D = 80\mu m$

pitch: 140µm

- > Advantages:
- 1. assembling process is easy and fast
- 2. no dead area inside the active area
- 3. uniform gas flow
- 4. detachable

Self-stretching technique (from CERN)

Detection efficiency and multiplicity test

Electronic system based on Microroc chip

Photograph of the test system

Initial voltage of GEM foil:

△V1: 285 V; △V2: 295 V

Edrift: 1.45 kV/cm;

Etrans: 2.95 kV/cm;

Eind: 3 kV/cm

Detection efficiency and multiplicity vary with high voltage

Preliminary study on THGEM-DHCAL

- three structure can be selected;
 - THGEM;
 - WELL-THGEM;
- WELL-THGEM is the-best selection.
 - thinner, high gain, lower discharge

The thickness of WELL-THGEM<6mm

Gain result of 20cmX20cm THGEM

The R&D progress of scintillator AHCAL

- Analog hadron calorimeter for CEPC:
 - The absorber: 2cm Stainless steel;
 - Detector cell size: $3cm \times 3cm$ (baseline),

 $4cm \times 4cm$, $5cm \times 5cm$;

Readout chip: ASIC SPIROC2E

The sensitive detector : Scintillator(organic scintillator);

40 sensitive layers, total readout channel?

≈6 Million (3cm × 3cm)

AHCAL prototype Plan

Specification:

- 35 active layers;
- Detector cell:17*17*35=10115;
- Absorber: stainless steel;
- ASIC Chip: SPIROC-2E;
- Prototype size:51*51*87.5cm³

Injection moulded Scintillator tiles

- 4000 tiles polystyrene, POPOP
 - injection moulded at Beijing
 - incl. dimple, no further surface treatment;
- Mechanical tolerances OK for assembly, the size error less than 50um;
- One batch scintillators Light yield is not very uniform, but the problem has been found, caused by material mixer, new batch scintillator under production;

Tiles size(mm)	30.08x30.01	30.07x30.04	30.04x30.02	30.09x30.09	30.05x30.03
	x3.08	x3.09	x3.09	x3.09	x3.09
Light yield(p.e.)	23.5	22.78	22.86	25.02	23.54

Detector Cells study

- Via mechanical drilling and polishing, detector cell was made
- The four sizes of $30 \times 30 \times 3 \text{mm}^3$, $30 \times 30 \times 2 \text{mm}^3$, $40 \times 40 \times 3 \text{mm}^3$ and $50 \times 50 \times 3 \text{mm}^3$ were made.
- SiPM or MPPC(surface-mounted)
- Scintillator(BC408) were wrapped by ESR foil

Scintillator tile wrapped by ESR foil was glued on the PCB

Readout electronics

- Electronic readout board is Hamamatsu C12332-01
- Temperature compensation keep amplitude of the SiPM stable

S12571-025P parameter :

Sensitive area :1 \times 1mm²

Pixel size :25 \times 25 μ m²

Pixel number:1600

Gain: 5.15E+05

S13360-1325PE parameter :

Sensitive area :1.3 \times 1.3mm²

Pixel size :25 \times 25 μ m²

Pixel number: 2668

Gain: 1.1E+06

-

Uniformity measurement

- Uniformity scans (MPPC: S12571-025P and)
- Scintillator tile under study can be moved in a step size of 5×5 mm²
- 30x30x3mm³, 30x30x2mm³and 50x50x3mm³ were measured.
- The mean response can reach 100%,94% within 10% deviation from the mean value, respectively.

Chinese EQR SiPMs Developed by Beijing Normal University

- Chinese Beijing Normal University (BNU) has developed silicon photomultiplier (SiPM) technologies with epitaxial quenching resistors (EQR).
- NDL EQR-SiPM is easy to implement owning to its unique structure featuring intrinsic continuous and uniform cap resistor layer, thus reducing the cost of AHCAL.

Schematic structure of EQR SiPM

NDL-SiPMTest result 1mmx1mm10umSiPM -new type

Six NDL-SiPMs was tested: 30mmx30mmx3mm with PL Scintillator

SiPM1	SiPM2	SiPM3	SiPM4	SiPM5	SiPM6
25.43p.e.	25.77p.e.	25.12p.e.	24.06p.e.	23.44p.e.	24.61p.e.

The light yield deviation smaller than 2p.e.

All SiPMs' high Voltage are 35V, each of which is measured after ca

NDL-SiPM 11-1010C specification

Parameter	Value	Parameter	Value
Effective Active Area	1×1mm ²	Peak PDE@420nm*	39%
Effective Pitch	10 μm	Dark Count Rate*	-500 kHz
Micro-cell Number	~10000	1 p.c. Pulse Width	5 ns
Operating Temperature	-196°C - +40°C	Temperature Coefficient For V _b 25 mV/	
Breakdown Voltage (Vb)	25.5±0.2 V	Gain	≥2×10 ⁵
Max. Overvoltage (ΔV _{max})	8 V	Single Photon Time Resolution ≤ 70 ps	

Crosstalk spectrum

CEPC~AHCAL Next

- ASCI chip readout study;
- Injection moulded plastic scintillator production;
- Test the Chinese NDL-SiPM;
- Detector cell test system construction;
- Simulation and optimization AHCAL

Summary

- CEPC CDR will be released this year
- R&D is on progress
- One ScW ECAL and Scint-AHCAL prototype will be built

You are welcome to join us!

Thanks!

Detector optimization

	Optimized (CDR)	Comments
B Field	3 Tesla	Required from beam emmitance
TPC radius	1.8 m	Required by Br(H→μμ) measurement
TOF	50 ps	Pi-Kaon separation at Z pole
ECAL thickness	84 mm	Optimized for Br(H->yy) at 250 GeV
ECAL cell size	(10 mm)	Maximum for EW measurements, better 5 mm but passive cooling needs 20 mm
ECAL num. layers	25	Depends on silicon sensor thickness
HCAL thickness	(1 m)	
HCAL num. layers	40	Optimized for Higgs at 250 GeV