First results from CMS SiPM-based hadronic endcap calorimeter **CALOR 2018** Eugene, 21-25 May 2018

Federico De Guio - on behalf of the CMS collaboration

Overview and context

- Advantages deriving from the Phase1 HE upgrade
- SiPMs operational experience
- A look forward

Outline

Sampling scintillating calorimeter Endcap coverage 1.3<|n|<3 Brass absorber (~8 cm each layer) 4 mm SCSN81, 9 mm Bicron BC408 (for layer 0) 19 longitudinal layers Light emission from tiles: λ =410-425 nm Signal collected with wavelength shifting fibers (λ =490 nm) Laser system to monitor scintillator response

The HCAL at CMS

HCAL endcap (HE) layout

- New photo-detector: HPDs → SiPMs
 - o x2.5 higher PDE
 - o x400 higher response
 - o Reduced noise
- New front-end electronics: QIE8 \rightarrow QIE11
 - 8-bit ADC with embedded TDC
 - o internal charge injection for in situ monitoring, programmable gain
- uTCA back-end
 - o supports larger data volumes, new trigger primitives

The HE Phase1 upgrade: readout

- In 2017 a pilot system of 20° in phi (HEP17) allowed deep understanding of physics performance, calibration, monitoring with no harm to data quality
- Signal from depths was summed at software level to mimic the original layout

The HE Phase1 upgrade: commissioning

- 36 readout boxes upgraded
 - o 6624 channels
 - System burned in for 8 detectormonths in 2016-17 prior installation

- Calibration with ⁶⁰Co source
 - o ⁶⁰Co wire-source inserted into tubes embedded in HE megatiles
 - Verify end-to-end detector functioning and tile-by-tile mapping
 - Provides startup calibration

Immediate benefits deriving from the upgrade

- ... vs Time
 - Unpredictable degradation of the HPDs
 - Large spread between channels
 - High η region is the most affected
 - SiPMs are behaving as the 'best HPD'
- ... vs Phi
 - RAW detector response is much more uniform
- Moreover the **scintillator damage** due to radiation is **mitigated** via 2.5x higher photon detection efficiency

A posteriori analysis of HPDs from HEP17

- Scan of a damaged HPD photocathodes using laser light o the response is reduced in a highly non-uniform way
 - o localized damage spots corresponding to position of fibres from tiles
- Real structural damage: hard to model and predict

nA

 Sources of catastrophic noise are eliminated • No noise associated to the readout box No noise associated to the SiPMs

 Analysis of the hits in HE in a cosmics run • Muon deposits are visible

Operational experience and calibration

HEP17 experience

- All 184 channels corresponding to HEP17 were functional during the whole 2017 data taking
 - Smooth operations, negligible downtime related to the upgraded detector
- The HEP17 pilot system allowed to:
 - Measure the pulse shape for scintillator+fibre+SiPM+QIE11 from data Project the reconstruction performance to the full scale HE o Fine-tune the simulation of the upgraded detector

 - Perform noise measurements
 - Gain experience in commissioning the trigger

SiPMs dark current measurement

- SiPMs dark current has been monitored during data taking
 - Slope is proportional to the SiPM area
 - Deviation from linearity are due to recovery time in absence of beam and variation in instantaneous luminosity
- 110 MeV of noise are expected at the end of Run3 (500/fb, projecting linearly)
 - To further reduce the noise one handle is to operate the SiPMs at 0°C

SiPMs gain stability

The gain of each channel is measured individually

 Single fit function to the multi-peak charge
 spectrum in pedestal and low intensity LED
 runs

- The gain was found to be stable during the whole 2017 data taking at the 1% level
- e of the ith peak of the ith peak of the ith peak gain

- The HCAL calibration makes use of:
 - E/p from isolated tracks for the energy scale measurement vs pseudorapidity
 - o phi-symmetry for equalizing the response along phi
- From 2018 the depth inter-calibration is also performed
 - MIP deposits from muons are used to correct for depth dependent effects like ageing
 - The improved sensitivity to MIPs (~5 pe/MIP/layer) is also exploited to extend the scale calibration beyond the tracker coverage

A look forward

HE in Run3

• Detector response assumed to follow an exponential loss for periods of constant dose rate:

$$L(d) = L_0 e^{-d/D}$$

$$D [Mrad] = d$$

$$d [Mrad] = to$$

- Remaining light output in the front layers at high eta of HE after 500/fb:
 - As low as 5% (ieta 29) and 20% (ieta 28)
 - Light loss is recovered/exceeded by the higher PDE of SiPMs w.r.t. HPDs
- HE will survive to end of Run 3 with performance ~unaffected

dose constant otal dose

HE light yield * PDE relative to beginning of Run1

CMS Simulation Preliminary 2018

16				2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5							
17	11	2.3	2.3	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.5				
18	10	2.2	2.3	2.3	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
19	9.6	2.1	2.2	2.3	2.3	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
20	9.1	2	2.1	2.2	2.3	2.3	2.3	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.5
21	8.7	1.9	2	2.1	2.2	2.3	2.3	2.3	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5
Je 22	8.1	1.8	1.9	2	2.1	2.2	2.3	2.3	2.3	2.4	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5
Tower 53 75	7.4	1.7	1.8	1.9	2	2.1	2.2	2.2	2.3	2.3	2.4	2.4	2.4	2.4	2.4	2.5	2.5	2.5
24	6.6	1.5	1.6	1.8	1.9	2	2.1	2.2	2.2	2.3	2.3	2.4	2.4	2.4	2.4	2.4	2.4	2.5
25	5.5	1.2	1.4	1.6	1.7	1.8	1.9	2	2.1	2.2	2.2	2.3	2.3	2.4	2.4	2.4	2.4	2.4
26	4.4	0.95	1.1	1.3	1.4	1.6	1.7	1.9	2	2	2.1	2.2	2.2	2.3	2.3	2.3	2.4	2.4
27	3.3	0.7	0.85	1	1.2	1.4	1.5	1.7	1.8	1.9	2	2	2.1	2.1	2.2	2.2	2.2	2.3
28	.3	0.44	0	0.77	0.93	0.89	1	1.1	1.2	1.3	1.4	1.5	1.5	1.6	1.6	1.7	1.7	1.7
29	0 5	0.11	0.8	0.43	0.55													
	0		2	3	4	5	6	7	8 La	9 yer	10	11	12	13	14	15	16	17
		3					·4	5	%)								

In conclusion: will do the same to HB :)

- Extremely positive experience from the operation of the upgraded HE in 2017 and 2018
- A look forward: the response loss (50-70%) of the front layers of the HCAL Barrel after 4500 fb⁻¹ will be largely recovered by the higher SiPM photodetection efficiency

• No impact on performance

Additional slides

- the shower development:
 - o Improve the pile-up suppression and improve the jet resolution

beyond tracking acceptance

Exploit the increased longitudinal segmentation to acquire information on

Exploit the improved sensitivity to MIPs to develop a MIP/muon trigger

HE 60Co source calibration

Response vs phi from HPDs in 2016

 Response for towers at ieta=28 at the end of the 2016 data taking, relative to the response at the beginning of the year from in-situ calibration. The response measured with collision events is compared to the one extracted from laser data. The response is plotted as a function of the azimuthal variable iphi.

What if we didn't upgrade HE?

- HE response loss will continue to progress
 - With largest contribution from HPD damage
 - Several channels at high eta will go below 10-20% of the new detector response

HE readout module

• 1 readout module = 48 channels = 5° slice in φ

SiPMs Parameters

Parameter

(MIP S/N) / (MIP S/N dVb=3V)

Non-linearity @ 300 @

Lost S/N for $I_{dark} \rightarrow ~I_{dark}$

Dark current [5C, 3.8/

PDE

Power [mW, 5C, 3.8/a

	HE @ dVb=3V	HE @ dVb =1.7V				
HE	1	~1				
GeV	21%	13%				
ark /4	~C)%				
/ab]	400µA	120µA				
	25%	17%				
ab]	27	8				

Calibration of the SiPMs

19993 57.34 20.54 221.99 / 21 52.55 ± 0.02 50.01 ± 0.11 13944.89 ± 118.47 507.28 ± 20.06 84.10 ± 6.89 17.95 ± 3.00 2.61 ± 0.01 4.13 ± 0.10 5.62 ± 0.28 6.82 ± 0.76 350 400 450 500

Single fit function for the entire spectrum down to three orders of magnitude drop of the peak.

$$f(x) = \sum_{i=0}^{N_{peaks}-1} A_i e^{-\frac{1}{2} \left(\frac{x-\mu_i}{\sigma_i}\right)^2}$$
$$\mu_i = \mu_0 + iG$$

A_i: amplitude of the ith peak σ_i : width of the ith peak μ_i : mean of the ith peak G: gain

SiPM gain is a direct parameter of the fit.

Measured SiPM gain when bias voltage for all SiPMs were set for:

- a nominal gain of 50 fC ٠
- a nominal gain of 40 fC •

Note: Gains have not been leveled in this plot

Dose-Rate plots from HEP17

 Dose constant (Mrad) vs. dose rate (krad/ hr). The data points show the values of dose constants derived from the scintillator signal loss in the HE sector read out by SiPMs using 48.3 fb-1 delivered to CMS in 2017. Red points correspond to layer 1 (L1) scintillators, and blue points correspond to layer 7 (L7) scintillators. The black line represents the best fit of the 2017 data using a parametrization $D = a \times Rb$, where D is the dose donstant (Mrad) and R is the dose rate (krad/hr).

Fractional jet p^T resolution vs eta

