The sPHENIX Calorimeters

Presented by E. Kistenev

On behalf of sPHENIX, BNL

CALOR 2018, UO, Eugene, OR

Special thanks to John Haggerty and Craig Woody for contributed slides.
What is sPHENIX?

sPHENIX is a proposal for a major upgrade to the PHENIX detector capable of making high statistics measurements of:

- Jets with tracking and calorimetric reconstruction
- Identified electromagnetic and hadronic probes of QGP
- Upsilon states
Ultimate Performance Parameters

Core physics goals:

<table>
<thead>
<tr>
<th>Physics goal</th>
<th>Analysis requirement</th>
<th>UPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximize statistics for rare probes</td>
<td>Accept/sample full delivered luminosity</td>
<td>Data taking rate of 15kHz for Au+Au</td>
</tr>
<tr>
<td>Precision Upsilon spectroscopy</td>
<td>Resolve Y(1s), Y(2s), (Y3s) states</td>
<td>Upsilon(1s) mass resolution ≤ 125MeV in central Au+Au</td>
</tr>
<tr>
<td>High jet efficiency and resolution</td>
<td>Full hadron and EM calorimetry</td>
<td>$\sigma/\mu \leq 150% / \sqrt{p_{T\text{jet}}}$ in central Au+Au for $R=0.2$ jets**</td>
</tr>
<tr>
<td>Full characterization of jet final state</td>
<td>High efficiency tracking for 0.2 < p_T < 40GeV</td>
<td>Tracking efficiency ≥ 90% in central Au+Au**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Momentum resolution ≤ 10% for $p_T = 40$ GeV**</td>
</tr>
<tr>
<td>Control over initial parton p_T</td>
<td>Photon tagging with energy resolution dominated by irreducible higher order processes</td>
<td>Single photon resolution ≤ 8% for $p_T = 15$ GeV in central Au+Au**</td>
</tr>
</tbody>
</table>

Calorimeter trigger

Calorimeter energy

Calorimeter Energy Id

Calorimeter PId (γ/h)

(* *) to be extracted using Au+Au, p+p data and simulations, following LHC examples
Calorimetry: overview

- **Designed around Density, Uniformity and Granularity;**
- **Novel sampling hadronic and electromagnetic calorimetry with novel deep longitudinal segmentation**
 - “Tilted in azimuth, near pointing in rapidity” towers tungsten-scintillating fiber SPACAL EMC with ~7 mm radiation length
 - “Tilted in azimuth, near pointing in rapidity” longitudinally sectioned steel-scintillating tiles HCAL towers with light collected by embedded WLS fibers
 - Sampling fraction is allowed to smoothly vary radially
 - Common SiPM based optical readout complemented with low cost 60 MHz waveform digitizers (compact, no HV, immune to magnetic field, amplified large amplitude differentially driven signals are immune to pick up noise).
Calorimetry: Implementation

• Tilt is chosen for two neighboring towers to overlap in azimuthal space;

• It allows in principle an independent measure of longitudinal CG in every section if shower vector is at least approximately known (measured);

• Local&Global CG knowledge allows to compute shower specific sampling fraction per section and leakage energy per particle or unit of acceptance (AI assisted analyses).
Calorimeters as relate to physics

- EMC drivers are decay electrons from Υ-family
 - Coverage: ± 1.1 in η, 2π in ϕ, ~projective in η and ϕ
 - Radiation length 7 mm, it is about 18 X_0 deep
 - Moliere radius 23 mm (approximate tower size)
 - 2.3% sampling fraction
 - Energy Resolution: $\sigma_E/E < 16%/\sqrt{E}$
 - Provide an e/h separation > 100:1 at ~5GeV/c
- Compact, works inside 1.4T magnetic field

HCAL requirements are driven by measuring jets in heavy ion collisions
 - Uniform and nearly deadzone free
 - $-1.1 < \eta < 1.1$, 2π in ϕ
 - $\Delta \eta \times \Delta \phi \sim 0.1 \times 0.1$ fits the jets with $R<0.4$
 - $24 \times 64 = 1536$ channels
 - Sampling fraction 2.8-3.7% (varies in depth)
- The Outer HCAL doubles as the flux return of the solenoid

System

- EMC 0.75 Labs
- Hinner 0.55 Labs
- Houter 3.8 Labs

95% absorption at 20GeV/c momenta
Sectors (-1.1<|\eta|<1.1) | 32
Towers | 64x24
Sc. Tiles (and SiPM’s) | 7680
Granularity (d\eta x d\phi) | ~0.1x0.1

Sectors (-1.1<|\eta|<1.1) | 32
Towers | 64x24
Sc. Tiles (and SiPM’s) | 6144
Granularity (d\eta x d\phi) | ~0.1x0.1

Sectors (0<|\eta|<1.1) | 64
Towers (64x8x48) | 24576
Sc. Fibers (per tower) | 667
Segmentation (d\eta x d\phi) | ~0.025x0.025
SiPM’s | 98304
EMCAL sector design

- 64 sectors (32+32)
- \(90 < r < 116\) cm
- 1.7 m long
- 450 kg/sector
- Read out on inner radius
EMCAL V2.1 assembled
EMCAL Absorber Blocks (*)

Active media
- Matrix of tungsten powder and epoxy with embedded scintillating fibers
- Density ~ 9-10 g/cm³
- $X_0 \sim 7$ mm (18 X_0 total), $R_M \sim 2.3$ cm

Scintillating fibers
- Diameter: 0.47 mm, Spacing: 1 mm
- Sampling Fraction ~ 2 % and changes with rapidity

(*) E.C. Dukes et al, in CALOR 1992 Proceedings, p 655
Blocks are read out in individual towers using optical light guides and SiPMs

- Light guide focuses light onto four 3x3 mm2 SiPMs
 - Phase space matching between tower and 4 SiPMs is < 6.4%
 - Short light guide is a poor mixer
 - Photostatistics gives ~ 500 p.e./GeV

\Rightarrow ~ 4.5%/E contribution to energy resolution
\Rightarrow 0.5 pixels/MeV (each SiPM has 40K pixels)
Standalone EMC Performance

2016

Beam Centered on a single tower

2017

Beam spread over more than one block

1D Projective ($\eta = 0$)

2D Projective ($\eta \approx 0.9$)

2014 - UCLA

1D Projective ($\eta = 0, 0.3, 0.9$)

O.Tsai (2014)

CALOR 2018, UO, Eugene, OR
Inner HCAL

- Nonmagnetic
- 0.7 Labs of Flat Stainless or Cu plates
- 4 tiles per tower
- Part of Hcal but also serves a leakage section to EMCal (neutral hadron rejection in photon sample). Has sampling fraction comparable to EMC.

- has been descoped in the DOE-funded detector (sPHENIX hopes to recover it as in-kind contribution as time goes by) and replaced by support structure
Outer HCAL

- 32 sectors. Each:
 - $1.9 \text{ m} < r < 2.6 \text{ m}$
 - 6.3 m long
 - 13.5 tons
HCal Tiles 2018 (12 small/ 12 large)

HCal Prototype
2018 FNAL Test beam

HCal Prototype Scintillating Tiles v2.1
2018 FNAL Test beam

T1-Amp vs Dist from exit - no fiber - clear side

Tile with black light stopper

Tile without light stopper

UTFSM 2016

2018.05.21

HCal Prototype Scintillating Tiles v2.1
UTFSM 2016

CALOR 2018, UO, Eugene, OR
• 60 MHz FADC – sufficient for energy measurements, not optimized for timing
• Base line restoration in two crossings
• 14 bit waveform digitizers
• Digital trigger data available on every crossing
• Transmit 192 channels in <40 μs
Calorimeters in the test beam

History
2/2014 Proof of principle
2/2016 System at $\eta \sim 0$
2/2017 System at $\eta \sim 0.9$
2/2018 System at $\eta \sim 0.9$.
"Production" components
In all cases, the combined system meets the sPHENIX spec!
Calorimeters and sPHENIX Physics

Jet measurements
- Measure the EM component of the jet energy along with HCAL
- Requirements on energy resolution and segmentation are determined mainly by the underlying event

For a 5 GeV electron from γ decay
$16%/\sqrt{E} \implies \sim 340$ MeV

γ-jet and direct photon measurements

γ-jet and direct photon measurements

Provide electron id ($e:ph > 100:1$)
Tag and measure photons for $p_T > 20$ GeV
sPHENIX is building deeply segmented longitudinally and laterally near pointing calorimeters optimized for jet extraction and characterization, electron identification and photon measurements at RHIC in the \(pT \) range free of underlying event effects in Heavy Ion Collisions.

The Calorimeters are nearly dead space free, have several novel features including deep longitudinal segmentation and intentional overlaps between neighbor towers in azimuthal space allowing enhanced shower shape measurement, control of the energy leakage from the system and event by event compensation for shower fluctuations in detector with sampling fraction inversely dependent on the depth in calorimeter.

The design was validated in beam tests of prototype sPHENIX electromagnetic and hadronic calorimeters from 2014 until 2018 (latest run was finished on May 18\(^{th}\)).
Mapping tile response