

The sPHENIX Calorimeters

Presented by E.Kistenev On behalf of sPHENIX, BNL

CALOR 2018, UO, Eugene, OF

Special thanks to John Haggerty and Craig Woody for contributed slides

2018.05.21

What is sPHENIX?

sPHENIX is a proposal for a major upgrade to the PHENIX detector capable of making high statistics measurements of:

- Jets with tracking and calorimetric reconstruction
- Identified electromagnetic and hadronic probes of QGP
- Upsilon states

G.Roland, DOE-OPE CD1/3A Review

2018.05.21

Ultimate Performance Parameters

Core physics goals

Physics goal	Analysis requirement	UPP	
Maximize statistics for rare probes	Accept/sample full delivered luminosity	Data taking rate of 15kHz for Au+Au	Calorimeter
Precision Upsilon	Resolve Y(1s), Y(2s), (Y3s) states	Upsilon(1s) mass resolution ≤ 125MeV in central Au+Au	trigger
000000000000000000000000000000000000000			
High jet efficiency and resolution	Full hadron and EM calorimetry Jet resolution dominated by irreducible background fluctuations	σ/μ ≤ 150%/√pT _{jet} in central Au+Au for R=0.2 jets**	Calorimeter energy
		Tracking efficiency ≥ 90% in central	
Full characterization of jet final state	High efficiency tracking for 0.2 < p⊤ < 40GeV	Au+Au ^{**} Momentum resolution $\lesssim 10\%$ for p _T = 40 GeV ^{**}	Calorimeter Energy Id
Control over initial parton p⊤	Photon tagging with energy resolution dominated by irreducible higher order processes	Single photon resolution ≤ 8% for p⊤ = 15 GeV in central Au+Au**	Calorimeter PId (γ/h)

sPHENIX DOE-OPA CD-1/3A Review

(**) to be extracted using Au+Au, p+p data and simulations, following LHC examples

SPHENIX

3

- Designed around Density, Uniformity and Granularity;
- Novel sampling hadronic and electromagnetic calorimetry with novel deep longitudinal segmentation
 - "Tilted in azimuth, near pointing in rapidity" towers tungsten-scintillating fiber
 SPACAL EMC with ~7 mm radiation length
 - "Tilted in azimuth, near pointing in rapidity" longitudinally sectioned steelscintillating tiles HCAL towers with light collected by embedded WLS fibers
 - Sampling fraction is allowed to smoothly vary radially
 - Common SiPM based optical readout complemented with low cost 60 MHz waveform digitizers (compact, no HV, immune to magnetic field, amplified large amplitude differentially driven signals are immune to pick up noise).

Calorimetry: Implementation

- Tilt is chosen for two neighboring towers to overlap in azimuthal space;
- It allows in principle an independent measure of longitudinal CG in every section if shower vector is at least approximately known (measured);
- Local&Global CG knowledge allows to compute shower specific sampling fraction per section and leakage energy per particle or unit of acceptance (AI assisted analyses).

Calorimeters as relate to physics

 Coverage: ± 1.1 in η, 2π in φ, ~projective in Radiation length 7 mm, it is bout 18 X₀ deep Moliere radius 23 mm (approximate tower si 2.3% sampling fraction Energy Resolution: "σ_E/E < 16%/VE" Provide an e/h separation > 100:1 at ~5GeV/ 	η and φ ize) c
• Compact, works inside 1.41 magnetic field	 HCAL requirements are driven by measuring jets in heavy ion collisions Uniform and nearly deadzone free 1.1.4 cm std. 1.2 min. b
System EMC 0.75 Labs Hinner 0.55 Labs Houter 3.8 Labs 95% absorption at 20GeV/c momenta	 - 1.1 < η < 1.1, 2π in φ - Δη × Δφ ~ 0.1 × 0.1 fits the jets with R<0.4 - 24 × 64 = 1536 channels - Sampling fraction 2.8-3.7% (varies in depth) • The Outer HCAL doubles as the flux return of the solenoid

SPHENIX

sPHENIX Calorimeters by numbers

Sectors (-1.1< η <1.1)	32
Towers	64x24
Sc. Tiles (and SiPM's)	7680
Granularity (dη x dφ)	~0.1x0.1

Sectors (-1.1< η <1.1)	32
Towers	64x24
Sc. Tiles (and SiPM's)	6144
Granularity (dη x dφ)	~0.1x0.1

Sectors (0< η <1.1)	64
Towers (64x8x48)	24576
Sc. Fibers (per tower)	667
Segmentation (dη x dφ)	~0.025x0.025
SiPM's	98304

CALOR 2018, UO, Eugene, OR

EMCAL sector design

- 64 sectors (32+32)
- 90 < r < 116 cm
- 1.7 m long
- 450 kg/sector
- Read out on inner radius

8

EMCAL V2.1 assembled

EMCAL Absorber Blocks (*)

Active media

- Matrix of tungsten powder and epoxy with embedded scintillating fibers
- Density ~ 9-10 g/cm³
- $X_0 \sim 7 \text{ mm}$ (18 X_0 total), $R_M \sim 2.3 \text{ cm}$

Scintillating fibers

- Diameter: 0.47 mm, Spacing: 1 mm
- Sampling Fraction ~ 2 % and changes with rapidty

(*) E.C.Dukes et al, in CALOR 1992 Proceedings, p 655

100 Mesh tungsten powder

Mesh screens & Sc fibers

Light Collection and Readout

Blocks are read out in individual towers using optical light guides and SiPMs

CALOR 2018, UO, Eugene, OR

I is the intensity of each fiber.

3

Light guide focuses light onto four 3x3 mm² SiPMs

- Phase space matching between tower and 4 SiPMs is < 6.4%
- Short light guide is a poor mixer
- Photostatistics gives ~ 500 p.e./GeV
 - \Rightarrow ~ 4.5%/VE contribution to energy resolution
 - \Rightarrow 0.5 pixels/MeV (each SiPM has 40K pixels)

2018.05.21 Apr 22, 2018

Standalone EMC Performance

SPHENIX

O.Tsai (2014)

Beam spread over more than one block

Inner HCAL

- 0.7 Labs of Flat Stainless or Cu plates
- 4 tiles per tower
- Part of Hcal but also serves a leakage section to EMCal (neutral hadron rejection in photon sample). Has sampling fraction comparable to EMC.
- has been descoped in the DOE-funded detector (sPHENIX hopes to recover it as in-kind contribution as time goes by) and replaced by support structure

SPHE

Outer HCAL

- 32 sectors. Each:
 - 1.9 m < r < 2.6 m
 - 6.3 m long
 - 13.5 tons

CALOR 2018, UO, Eugene, OR

HCal Tiles 2018 (12 small/ 12 large)

SPHENIX

Calorimeter electronics

- 60 MHz FADC sufficient for energy measurements, not optimized for timing .
- Base line restoration in two crossings .
- 14 bit waveform digitizers .

15

- Digital trigger data available on every crossing .
- Transmit 192 channels in <40 μs

2018.05.21

6000 ADC

5000

4000

3000

2000

1000

CALOR 2018, UO, Eugene, OR

Calorimeters in the test beam

2016

History

- 2/2014 Proof of principle
- 2/2016 System at η~0
- 2/2017 System at η~0.9
- 2/2018 System at η~0.9. "Production" components

2017

SPHENIX

2018

sPHENIX Calorimeter Performance

2018.05.21

Calorimeters and sPHENIX Physics

Jet measurements

- Measure the EM component of the jet energy along with HCAL
- Requirements on energy resolution and segmentation are determined mainly by the underlying event

For a 5 GeV electron from Υ decay 16%/VE \Rightarrow ~ 340 MeV

γ -jet and direct photon measurements

^{018.05.21} Provide electron id (e:h > 100:1) CALOR 2018, UO, Eugend, age and measure photons for p_T > 20 GeV

True jets begin to dominate fake jets for $p_{\tau} > 20$ GeV/c

+ENIX

Summary

sPHENIX is building deeply segmented longitudinally and laterally near pointing calorimeters optimized for jet extraction and characterization, electron identification and photon measurements at RHIC in the pT range free of underlying event effects in Heavy Ion Collisions.

The Calorimeters are nearly dead space free, have several novel features including deep longitudinal segmentation and intentional overlaps between neighbor towers in azimuthal space allowing enhanced shower shape measurement, control of the energy leakage from the system and event by event compensation for shower fluctuations in detector with sampling fraction inversely dependent on the depth in calorimeter.

The design was validated in beam tests of prototype sPHENIX electromagnetic and hadronic calorimeters from 2014 until 2018 (latest run was finished on May 18th).

Mapping tile response

