Detector performance studies for the CMS High Granularity Calorimeter

Joaquín B González
On behalf of the CMS Collaboration

CERN
Why beam tests? Can we not just simulate?

TARGETS of the HGCAL test beam team:
Validate the overall conceptual design of the HGCAL - i.e. can it be built similar to the original Technical Proposal and does it work as planned? Compare the measured performance of the prototype systems with GEANT4-based simulation
Start to build a team of people who will be able to follow the design, development and construction of the new calorimeter

Beam tests are critical to test the performance of devices and tune/validate the simulations* particularly for hadron calorimeters *here “the simulations” means the geometry description and use of appropriate physics list etc. (Rong-Shyan Lu)

Figure 5.21: Energy and position resolution: (left) relative energy resolution as a function of the electron energy in data and simulated showers, for test beams at FNAL and CERN; and (right) residual width of the x-coordinate reconstruction at a depth of 6X₀ as a function of incident electron energy.
Major beam/system-test related milestones in the HGCAL project

- **HGCAL APPROVED AS "THE" ENDCAP CALORIMETER**
- **STARTING PLANNING TESTBEAMS**
 - OMEGA STARTED THE DESIGN OF SKIROC2_CMS
- **8 MODULES TEST START AT CERN**
 - FIRST "HEXAGONAL MODULE" WORKING AND TESTED IN BEAMS AT FNAL (LESS THAN A YEAR AFTER!)
- **FIRST SKIROC2-CMS RECEIVED AT CERN**
- **BIGGEST SYSTEM TESTED AT CERN: 22 SILICON MODULES + CALICE AHCAL**
- **TESTBEAM AT DESY MIP AND OTHER CALIBRATION PURPOSES**
 - TODAY
- **16 LAYERS TESTED AT FNAL**
- **HEXB DESIGN STARTS AT CERN INCLUDING SKIROC2-CMS ASIC**
- **FIRST TESTED HEXB**
- **PREPARING FOR ~100 SILICON MODULES WITH 28 IN ECAL AND THE REST IN HCAL PART PLUS A CALICE AHCAL (SCINTILLATING TILES + SIPM READOUT)**

Detector performance studies for CMS HGCAL - Calor18 - University of Oregon - Joaquín B. González (CERN)
Two iterations of the electronics chain for beam tests
still on going, and not related with the final system

Readout system in 2016
Fast deploy system (mix of market electronics with ad-hoc design)
Know-how generation, training people and prepare the rest of the system (mechanics, electronics, SW, facilities...)

Readout system from 2017

Skiroc2-cms added (ToT, ToA, data handling improvements...)
Very scalable,
Relatively inexpensive (ORM from CMS)
Quite high bandwidth up to ~14000 channels @ 50 Hz
Fully integrated on EUDAQ Software (reconstruction on real time during testbeam and data quality assurance)
Module assembly for testbeam prototype (2016)

Four layers design for the sensor module
For 2016, PCB (top layer of the stack) was interconnection.
For 2017, PCB was already the front end electronic board
These modules for beam tests is enabling us to tune our module production process

1. CuW baseplate
2. Sensor layer
3. Gold plated kapton layer (biasing)
4. PCB
5. CuW Baseplate
6. Sensor
After the sensor glued and wire bonded to the PCB

2016 module example

~700 wirebonds on each module

6 minutes each module
Skirroc2 ASIC is inherited from CALICE. Already working, Well known, and tools already developed.

Starting point that allows the start of the other parts of the work, like mechanics, system debug, sensor studies, software development (control, data handling, reconstruction, data quality assurance...)

It is a two layers design, that gave us the flexibility need in this first beam tests, using well know electronics, to simplify calibration and debugging of the new parts

Finally mounted device. First Hexaboard

2016 module example
With new ASIC Skiroc2-CMS ready, and with some improvements from what we learnt with previous design.

One layer only design. Readout PCB is now attached to the sensors.

4 skirocs (instead of 2) for improving capacitance from the trace length.

Only two connectors during working (HDMI and HV) plus one miniUSB for FPGA programming (offline).

Better DAQ chain (smaller, faster and more reliable) avoiding proprietary parts.

Avoids data converters, kapton cables and other parts that reduce robustness while increase performance.
During the beam tests, we created a “looks like close to final” system and that includes the AHCAL (scintillator+SiPM) SiPMs already used successfully in e.g. CMS HCAL Phase 1 upgrade.

Tile boards or “megatiles” limited in size by CTE of different components. For first beam tests, modified CALICE AHCAL used for rear hadron calorimeter: 3x3cm² scintillator tiles + direct SiPM readout.

Left: Scintillator+SiPM planes used in the AHCAL, including a closeup of one the tiles

Right: layers of 74 mm-thick absorber interspersed with scintillator planes.
At FNAL, there was a ~15X₀ configuration with 16 layers where each module is double sided.

At CERN, only 8 modules available, but two configurations were explored. From 6X₀ to 15X₀ (CERN Setup 1) and from 5X₀ 27X₀ (CERN Setup 2).

Different facilities -> different beams -> different setups.
Different facilities -> different beams -> different setups

Full prototype (not all layers) from the last test beam on H2 beam line at CERN mounted on the scissor table in the H2
Signal reconstruction

The geometries of all setups were reproduced in CMSSW. Data were taken with a wide range of electron energies: 4–32 GeV at FNAL and 20–250 GeV at CERN; as well as 120 GeV protons, muons and charged pions with energies between 20–350 GeV.
Energy spectrum of exposed cells well defined through additional readout of four upstream delay wire chambers: Reference tracks.

From Geant4 simulation: 1MIP = 84.9 keV (300um PinN silicon sensor).

- Simulated energies are smeared assuming S/N ~ 6.
- No bad surprises. Good agreement even in the Landau tails.
Shower shape studies

Longitudinal depth barycentre distribution comparison between data and simulation for electron energies of 20 and 250 GeV at CERN in 2016 (From TDR 10.18)

Distribution (left) of the ratio E_1/E_7 for 100 GeV electrons at a depth of around $1X_0$ for data (points) and simulated showers (histogram); and (right) transverse shower profile (E_7/E_{19}) measured at a depth of 4λ from incident 200 GeV charged hadrons (20% pions; 80% protons). From TDR Figure 5.20
Relative energy resolution as a function of the electron energy in data and simulated showers, for test beams at FNAL and CERN. This result is not the last one.

For having the full energy resolution, we still need the whole 28 layers system. As expected, FNAL setup (16 layers, 0–15 X_0) performed better than CERN one (8 layers, 5–27 X_0) for low energy electrons.
Spatial resolution

as documented in detector note on TB2016 analyses

The small cell sizes gives us a position resolution better than 1mm, in each layer, for high pT electromagnetic showers, with little effort. This has been confirmed by the test beam (TDR Section 5.2).

We will be also able to measure the shower direction. The axis of electromagnetic showers is determined using a principal component analysis methodology as a starting point for the construction of shower shape variables.

Residual width of the x-coordinate reconstruction at a depth of 6X_0 as a function of incident electron energy
Time resolution vs signal-to-noise is compatible between the unirradiated and irradiated diodes. Single sensor time resolution at large S/N = 25/\sqrt{2} \sim 15$ ps, in agreement with the unirradiated results. Same performance with the \textbf{Irradiated} diodes $\rightarrow \sim 15$ ps resolution for one single diode.
Two experimental goals:
1. Detailed **MIP calibration** of each cell as a function of the impact position. Also varying the bias voltage.
2. Calorimetric measurements.
 - Comparison of **response** of channels in consecutive modules.
 - **Comparison to GEANT4** physics lists.

Beam test at DESY with DATURA high precision tracking telescope.
3-6 GeV electrons recorded at ~40Hz (limited by the DAQ system).
1+2 HGCal modules under test.
beam telescope for precise tracking with ~8 microns resolution.

Description of beam test at DESY March 2018
Shown at DPG 2018
HGCal and DESY Telescope data correlated
Shown at internal system test meeting in April 2018

High precision tracking system
Reading of the channels for each point (with MIP)

Exact shape of the hexagonal cells was drawn
Material-budget measurements at DESY
Shown at internal system test meeting in April 2018

measurement of kink angle vs incidence position
+ Surface scan
= 2D image of material budget

run 635 <kink angle X>
run 636 <kink angle X>
run 637 <kink angle X>
Extensive laboratory tests ongoing/planned in 2018 at CERN, FNAL, DESY... For example, for silicon part of HGCAL

Component level (functionality, performance before/after irradiation)
- Silicon sensor (6”, 8”, p-on-n, n-on-p etc.)
- ASICs (SKIROC2-CMS, HGCROC, Concentrator...)
- Powering (on-detector FEAST etc.; off-detector)
- Optics (IpGBT + VL)
- Hexaboard

CERN, FNAL, HEPHY
Omega (LLR), CERN, Saclay, Imperial

But there are much more!!
Similar tests for Scintillators+SiPM
Mechanical designs improving engineering on modules and cassettes, etc
Reconstruction software and data analysis...

Module level (functionality, performance, mechanics)
- Module structure vs IV characteristics
- Thermal/power cycling
- External signal sources
 - IR laser
 - Cosmics

UCSB, CERN
UCSB, CERN

CERN, Minnesota, Pune...
CERN, UCSB, Pune, IHEP...

System level (functionality, performance, integration)
- Module + motherboard + powering (on-detector & off-detector)
 + trigger + readout + services

Use “final” components as they become available

CERN, DESY, FNAL, IHEP

Beam tests
Some examples of ongoing laboratory system tests (@CERN, building 27)

3D-printed rails for studying possible inductive effects from FEAST board to silicon module below

Modules inside “Vienna box” for calibration of ToT vs temperature; also making a cosmic-ray setup
Small- and large-scale test stands being used to understand and tune systems

@CERN: 1-module standalone systems for studying long-term stability. Also providing small systems for developing institutes’ expertise

Can also use in cosmic-ray setups

@CERN: In lab 27, testbeam setup used to study noise, grounding schemes etc.
Further beam tests planned at CERN in 2018: Performance of large system

O(100) 6” silicon modules (2017 version)
All mechanics and most DAQ components (hardware & software) exist

June test (10 days): 28-layer CE-E with Pb absorbers
 Energy/position resolution & comparison to MC (up to \(\sim 100\) GeV)

October test (14 days): CE-E + 12-layer CE-H (silicon) + AHCAL with steel absorbers
 \(\sim 14\)k channels (same as existing ECAL endcaps)
 Energy/position resolution & comparison to MC (up to \(\sim 250\) GeV)
 Possibly explore timing performance
 N.b. @50 Hz trigger rate, approx 500 Mbytes/sec data-taking rate

During LS2: no beams at CERN, but plenty of other facilities
 e.g. DESY, FNAL, IHEP Beijing
Joaquín B González
On behalf of CMS Collaboration
CERN
The DAQ is evolving following the schedule
But there are still a few steps more

Present system uses mostly temporary components including Skiroc2-cms
The DAQ is evolving following the schedule
But there are still a few steps more

Step 1: Use FEAST for LV power
The DAQ is evolving following the schedule
But there are still a few steps more

Step 2: move BV distribution away from proprietary board
The DAQ is evolving following the schedule
But there are still a few steps more

Step 3: lpGBT+VL with FPGA mimicking concentrator ASIC
The DAQ is evolving following the schedule
But there are still a few steps more

Step 4: use 8” module with HGCROC-DV1
The DAQ is evolving following the schedule
But there are still a few steps more

Step 5: use motherboard & concentrator ASIC

Bias Voltage

Low Voltage

BV distribution

FEAST

8" module with HGCROC-DV1

Motherboard with Concentrator ASIC

IpGBT + VL

Ethernet 5m cat 6a 1 Gbps

Ethernet 5m cat 6a 10 Gbps

PC

RAID

For DQM

To EOF 1-10 Gbps

Detector performance studies for CMS HGCAL - Calor18 - University of Oregon - Joaquín B. González (CERN)
Beam performance studies for CMS HGCAL – Calor18 - University of Oregon - Joaquín B. González (CERN)

Highlights from the Backend of testbeam DAQ
As it is on 2018

Biggest test beam we had 20 HexB with 3 RoB (8, 5 and 7 respectively)

1 RoB can handle up to 8 HexB

1 RoB sends 123KB of raw data (plus headers <150KB in total through the network) no matters how many HexB there are attached (If not existing, it fills up with zeros, timestamps, etc.)

Actual system runs around 50Hz ~> 6MB/s => 30.01MB/spill => upto 3.52GB/h

It can easily cope with 5 RoB. Capable up to 10 (not recommended). Farther than that, some modifications are needed (with actual ratio and dataflow). All future (solutions) modifications are already designed and prepared waiting for when we need them (Raid, HDD swapping, 10Gb/s electrical and optical links)
Safety system for laboratory & beam tests

PLC & WinCC-based monitoring, alarming and control (interlock) systems

Trialing new radiation-hard compact environmental sensors for humidity/temperature

Monitoring power supplies and cooling system, with automated actions including alarming, interlock, and other safety features.

Also feeds up web based user interface for shifters info and On call responsibles

Detector performance studies for CMS HGCAL - Calor18 - University of Oregon - Joaquín B. González (CERN)
New laboratory space in building 186 @CERN close to DSF, climatic chambers, TIF...

Two (joined) lab spaces equipped with anti-static flooring, climate control, air purification

Ready by ~June 2018
The particle beams available at FNAL and CERN were rather different and complementary, particularly for electrons.
Electron purity (verified with simulation) greater than 97% with 95% pion rejection. Energy spread for e- less than 5%.
Electron purity at CERN was always higher than 98% and increased with energy. Spreads on the energies below 1%.
In addition to electrons, data were taken with 125 GeV protons at FNAL, whilst at CERN we had incident 125 GeV negative pions as well as muons. These latter were produced from 125 GeV π− decays and thus had a range of energies.
The rate capability of the DAQ chain was around 30-40 Hz. In addition to “physics” runs, data were taken when the beam was not present, in order to estimate pedestals, noise and stability.
At both FNAL and CERN the main trigger source was plastic scintillators. At FNAL a single 2 × 2 cm² scintillator was used, with two SiPMs as readout devices in coincidence. At CERN two consecutive scintillators with PMT readout readout were used in coincidence, with the one closest to the detector defining the trigger size, at 4 × 4 cm².

<table>
<thead>
<tr>
<th>Energy (GeV)</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>32</th>
<th>70</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>125</th>
<th>120</th>
<th>30-120</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAL</td>
<td>X</td>
</tr>
<tr>
<td>CERN</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1: Data taken at FNAL and CERN in 2016
@FNAL “dummy” cassette being assembled with PCBs containing only connectors and heat loads

8” hexagonal PCBs glued to silicon and baseplates → **modules**
3 modules connected to a single “**motherboard**” providing power, data concentrator and optical links

Studying **connectivity, services layout, assembly procedures** etc.
Dummy cassette is installed in a cold box to study heat-transfer characteristics – works well!

- Inlet temp -24C, outlet temp -27C
- Pressure difference 1 bar
- Cooling plate -24C, ambient -9C
ONGOING WORK!!!

Several modules behaves much worse than the rest due to production (mainly) and other bugs. But apart from them, no relevant board-to-board variations were found after two month stored. Deep studies on modules 46 and 71 gave answers for changes in the design and the production processes. All of the modules responds mostly the same in different periods for the same tests (even the bad ones).
TDR already released: TDR-17-007-Dec22

System mostly debugged, in PCB design, ASIC performance, calibration, data handling, data transmission and storing, mechanics, building process... Everything almost ready for production

During second half of 2018, we aim to equip a prototype mimicking th full CE-E (28 layers) and 12 CE-H silicon layers with at least 4 hexagonal modules equipped with the Skiroc2-CMS ASIC (76 modules in total). The CALICE AHCAL will again complement the silicon for the required hadronic depth (hadronic shower in 100ps precision)

Also plans for upgrading with the final ASIC when available, as for the rest of pieces of the final powering and readout chain.

Since CERN testbeam area won’t be available in 2019/2020, facilities at FNAL and DESY will be increasingly valuable for further tests.