Engineering Challenges of the CMS High Granularity Calorimeter

Maral Alyari

Fermi National Accelerator Laboratory On behalf of the CMS collaboration

CALOR 2018

Challenges at HL-LHC

- High Luminosity-LHC plans 5x10³⁴ cm⁻²s⁻¹ instantaneous luminosity and 3000 fb⁻¹ integrated luminosity
 - High pile-up conditions (Up to 200 interaction per bunch crossing)
 - High radiation dose
 (150 Mrad, 10¹⁶ n/cm²)
- The current Electromagnetic and Hadronic Endcap Calorimeter cannot stand the radiation dose and needs replacement

CMS High Granularity Calorimeter

- A sampling calorimeter
- ~500 m² of Scintillators
- ~600 m² of Silicon sensors
 - Expecting 6M channels
 - Expected to dissipate 220kW heat
- Will be operating at -30 °C
 - To reduce radiation damage

- Electromagnetic section
 - Active element: Silicon
 - Absorber: Lead, Copper-Tungsten, Copper

Hadronic section

- Active elements: Silicon and Scintillator
- Absorber: Stainless Steel

https://indico.cern.ch/event/642256/contributions/2962409/

Maral Alyari

HGCal Modules and Cassettes

• Cassettes provide support and cooling for the modules

Addressing Thermal and Mechanical Challenges

Challenges:

- Silicon detector has to operate at -30°C
 - CO₂ system temperature -35°C
- 220kW heat load is expected
- To address the challenges a mock-up program is in place
- Goals of the thermal and mechanical mock-up:
- Study thermal performance of cassette
 - Temperature measurements of cooling plate and silicon sensors
 - Comparisons to FEA calculations
- Study mechanical properties of the cassette
 - Demonstrating module mounting scheme
 - Achieving tolerances
 - Investigating ease of assembly
 - Addressing thermal contraction issues

5

Addressing Thermal and Mechanical Challenges

Challenges:

- Silicon detector has to operate at -30°C
 - CO₂ system temperature -35°C
- 220kW heat load is expected
- To address the challenges a mock-up program is in place
- Goals of the thermal and mechanical mock-up
- Study thermal performance
 - Temperature measurements of cooling place and silicon sensors

of ca

- Comparisons to FEA calculations
- Study mechanical properties of the cassette
 - Demonstrating module mounting scheme
 - Achieving tolerances
 - Investigating ease of assembly
 - Addressing thermal contraction issues

Maral Alyari

Geometry of the 1st Mock-up Cassette

- Designed a 30 degree all Silicon Hadronic cassette
 - ~ 1.5m x 1m in size

Cooling tube embedded into Copper cooling plate

7

Mock-up Module Layers

Printed Circuit Board; **1.6 mm thick**

the baseplate

Enables performing thermal studies

Enables mounting

Mock-up Si Sensor and Base-plates

- Mockup Si sensors cut from blank 8" Silicon wafers
 - $750 \,\mu\text{m}$ thick
 - 320 µm thick (design)
- 1 mm thick base-plates:
 - Material with Coefficient of Thermal Expansion close to that of Silicon:
 - Carbon Fiber (Electromagnetic design)
 - Copper/Tungsten (Hadronic design)
 - Currently investigating economical choices:
 - Brass
 - Stainless Steel
 - Ceramics

• Mock-up results are so far based on Brass base-plates

Maral Alyari

Module Boards

- Mockup of 432 channel module board
 - Designed to apply heat loads and measure temperature of the silicon

Mock-up Module Assembly

Maral Alyari

Mock-up Module Assembly

• The assembly is placed for 30 minutes in vacuum to remove the air bubbles

The assembly is placed in an oven at ~40°C for the epoxy to cure (3 hours)

Mock-up Module Assembly

Maral Alyari

Initial Gluing Challenges in Module Construction

- Coefficient of Thermal Expansion of Brass module baseplate and PCB: 12x10⁻⁶ K⁻¹ and 19x10⁻⁶ K⁻¹
- Coefficient of Thermal Expansion of Silicon: 2.8x10⁻⁶ K⁻¹
- At -30 °C, the Brass baseplate and the PCB are pulling the silicon sensor in opposite directions
 - The glue has to resist the stress
- 3 modules with insufficient amount of glue had the PCB delaminated at -40 °C and the sensor cracked
- After insuring sufficient glue is applied no more failure was observed

Initial Gluing Challenges in Module Construction

- Coefficient of Thermal Expansion of Brass module baseplate and PCB: 12x10⁻⁶ and 19x10⁻⁶ K⁻¹
- Coefficient of Thermal Expansion of Silicon 2.8x10⁻⁶ K¹
- At -30 °C, the Brass baceplate and the PCB are pulling the silicon sensor in opposite directions
 - The glue has to resist the stress
- 3 modules with insufficient amount of glue had the PCB delaminated at -40
 °C and the sensor cracked
- After insuring sufficient glue is applied no more failure was observed

-----> Delaminated

Baseplate is on the top

Automated Module Assembly

- A pick-and-place gantry is used for mating the main components of Silicon modules
- Ensures consistent dispense of right amount of glue

Dynamic Mounting of Modules in Cassettes

Thermal FEA Simulation Set-up

- The expected performance of the cooling system is calculated based on the combination of FEA simulations in two steps:
 - Full size Copper cooling plate and CO₂
 - Single Silicon module and Copper cooling plate

Full size Copper cooling plate and CO_2

Single Silicon module and Copper cooling plate

Cooling Plate Performance

Copper cooling plate and CO₂:

- FEA calculations have been made assuming an expected uniform heat load of 200W
 - 6.8 meter long tube
 - 2.197 gm/sec CO₂ mass flow
 - Pressure Drop = 0.8 psi
- At most the Copper cooling plate is expected to be 2.5 °C warmer than the CO₂ temperature.

Expected Performance at Silicon Level

Copper cooling plate and Silicon:

• 6 W heat load is applied though 12 heaters (0.5 W each)

• On average the Si is expected to be 1.5 °C warmer than the Copper cooling plate

• As a result all Si sensors satisfy the requirement of being colder than -30 °C

Assembled the Mock-up Cassette

- The mockup cassette has been fabricated, assembled and cold tested
 - 16 full modules and 6 motherboards

Measurements vs. Simulation

- 6 W heat load applied per module (12 heaters; each 0.5W)
- The Si temperature was measured ~5.2°C above CO₂ outlet on average for 6W heat load per module

Module Flatness at Cold Temperatures

- Measured the height of the center and 6 corners of the modules installed on cooling plate with the Coordinate Measurement Machine at -30 °C
- -30 $^{\circ}\text{C}$
 - The air gap below the warped modules explains why the measured temperatures are larger than expected
- Other base-plate material is being investigated that can prevent modules from warping

Conclusions

- The CMS HGCal is addressing high pile-up and high radiation dose issues at HL-LHC
 - Radiation hard Si modules
 - Operation at -30 °C
 - 6 M channels
 - 220 kW heat dissipation
- The thermo-mechanical design must
 - Address challenges of efficient heat removal over large surfaces
 - Safely accommodate the large differences in CTE of most commonly used materials (such as PCBs, most metals, etc.) compared to that of the Silicon sensors
- A baseline design which addresses these issues has been developed for the TDR
 - An extensive set of detailed simulations and tests with full scale realistic mock-ups is currently under way to further optimize this design and arrive at a fully engineered solution

Back-up

CMS HGCal Cassette Installation

- Cassettes are built around a central copper cooling plate
 - Provides mechanical support and cooling for active elements
- Cassettes are assembled and tested at assembly sites
- Shipped to Point5 and installed into the calorimeter
 - Electromagnetic cassettes stacked
 - Hadronic cassettes inserted

0

+0+

HGCal Cassette Types

• 3 types of cassettes Single-sided Si + scintillator cassettes for CE-H layers 9 -- 24 v1589 • Single-sided Si only cassettes for CE-H layers 1 -- 8 Double-sided Si only cassettes with Pb absorber <u> de e</u> for CE-E, 14 x 2 layers $\eta = 2.931$ $\eta = 3.0$ 15.9 Magnetic field 40 35 <u>40et</u> 313.5 FH 560.6 "Off" BH1000.8 3570.3 FH active front 4130.9 BH absorber from 4198.9 BH active front 5137.7 BH back 5641 Back side of Back flange from IP

HGCal Cooling System

- The cooling of the HGCAL detector is based on bi-phase CO₂
- Rigid vacuum-jacketed stainless steel pipes carry the CO₂ from the refrigeration plants to the detector.
- The flow is fed to the detector cold volume via 24 vacuum-insulated coaxial lines on each Endcap.

Vacuum jacketed coaxial lines over the Endcap suspension system brackets

two sets of supply and return lines every 30°

Design Question Being Addressed

Cassette boundary shape

- 30 or 60 degree cassettes
- Whole modules or half modules at the edge

• Mounting scheme of modules

- One shared screw for three module corners or individual ones, special mounting on cassette edge, washer design, location of module locating pins
- CO₂ cooling pipe shape and capillary design
 - Operating pressure difference of cooling plant and heat power drives the design
- Geometry of motherboards and connections to modules
 - Single or double row of modules, number of modules per motherboard
 - Rigid, compression, flex cable connectors
- Power delivery
 - Location of DC to DC converters
 - Power bus bar or inside motherboard
- Cassette interface patch panel design
- Assembly procedures, tooling and testing

Maral Alyari

Segmentation of the Cassettes

- The interface between cassettes follows the outline of whole-size modules
- The size of the Electromagnetic (CE-E) cassettes has been chosen to be 60 degrees
- The size of the Hadronic (CE-H) cassettes has been chosen to be 30 degrees to ease fabrication and assembly of components
 - Cassettes can be inserted in pairs as a 60-degree unit
- All cassettes use common design where possible

More Views of the Mock-up Cassette

Module Design Modifications

 Introducing new High Voltage wire-bond locations to simplify bonding and potting

Motherboard and DAQ System

- DAQ system available to read order of 50 ADC chips and 800 RTDs
- DAQ is based on Raspberry Pi that communication to ADC chips on SPI bus
- At the end of motherboard chains, a Raspberry Pi carrier board is connected which communicates to the DAQ PC via ethernet

