Combining

Higgs and diboson data in the EFT approach

David Marzocca

Universität
Zürich ${ }^{\text {UZ }}$

Deviations in high energy tails

Deviations in the
tails of $2 \rightarrow 2$ processes $\quad \delta_{\text {tail }} \sim \mathcal{O}\left(g_{*}^{2} \frac{p^{2}}{\Lambda^{2}}\right)$

The SM Effective Field Theory

$\Lambda \gg E_{\exp }, m_{h}$
particle content + symmetries as in the $\mathrm{SM}+\mathrm{L}$ and B conservation
(Higgs is a $\operatorname{SU}(2)\llcorner$ doublet)

Leading deformations of the SM

$$
\mathcal{L}^{\text {eff }}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)}+\ldots
$$

59 independent dim-6 operators if flavour universality. 2499 parameters for a generic flavour structure.
[Buchmuller and Wyler '86, Grzadkowski et al. 1008.4884, Alonso et al. 1312.2014]

A step-by-step approach

i.e. how to successfully make sense of 2499 parameters

Any given on-shell process receives contributions from a limited number of operators $\# \leq \mathrm{O}(10)$.

Hierarchy of precision.
Some observables are much more precise than others. Impose these bounds before going on to less precise ones.
e.g. Corbett et al. [1211.4580], Pomarol and Riva [1308.2803], ecc..

Impose precise LEP-1 constraints
BEFORE doing Higgs or diboson physics.

Note: This process, when correctly done, is basis-independent.

Why a combination?

The same operator can contribute to different processes.
For example: $\quad O_{H f}=i\left(H^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H\right) \bar{f} \gamma^{\mu} f=-\frac{1}{2} \sqrt{g^{2}+g^{\prime 2}} Z_{\mu}(v+h)^{2} \bar{f} \gamma^{\mu} f$

Z couplings $\delta g_{Z f}$

$$
\mathcal{O}_{W}=i g\left(H^{\dagger} \tau^{a} \stackrel{\leftrightarrow}{D^{\mu}} H\right) D^{\nu} W_{\mu \nu}^{a}
$$

*

Combine Z-pole, WW, and WZ data with Higgs data to derive stronger constraints for the EFT.

aTGC in the SMEFT

After imposing $Z(W)$-pole limits, 3 unconstrained combinations of SMEFT coefficients contribute to the diboson processes:

Warsaw

$$
\delta g_{1, z}=-\frac{v^{2}}{\Lambda^{2}} \frac{g_{L}^{2}+g_{Y}^{2}}{4\left(g_{L}^{2}-g_{Y}^{2}\right)}\left(4 \frac{g_{Y}}{g_{L}} w_{\phi W B}+w_{\phi D}-\left[w_{\ell \ell}\right]_{1221}+2\left[w_{\phi \ell}^{(3)}\right]_{11}+2\left[w_{\phi \ell}^{(3)}\right]_{22}\right)
$$

basis:

$$
\delta \kappa_{\gamma}=\frac{v^{2}}{\Lambda^{2}} \frac{g_{L}}{g_{Y}} w_{\phi W B}, \quad \lambda_{z}=-\frac{v^{2}}{\Lambda^{2}} \frac{3}{2} g_{L} w_{W},
$$

SILH $\quad \delta g_{1 z}=-\frac{g_{L}^{2}+g_{Y}^{2}}{g_{L}^{2}-g_{Y}^{2}}\left[\frac{g_{L}^{2}-g_{\bar{Y}}^{2}}{g_{L}^{2}} \bar{c}_{H W}+\bar{c}_{W}+\bar{c}_{2 W}+\frac{g_{Y}^{2}}{g_{L}^{2}} \bar{c}_{B}+\frac{g_{Y}^{2}}{g_{L}^{2}} \bar{c}_{2 B}-\frac{1}{2} \bar{c}_{T}\right] \quad$ note that here
basis:

$$
\delta \kappa_{\gamma}=-\bar{c}_{H W}-\bar{c}_{H B}, \quad \lambda_{z}=-6 g_{L}^{2} \bar{c}_{3 W},
$$

$$
\bar{c}_{i} \sim \frac{m_{W}^{2}}{\Lambda^{2}} c_{i}
$$

Higgs

$$
\delta g_{1, z}=\frac{1}{2\left(g^{2}-g^{\prime 2}\right)}\left[-g^{2}\left(g^{2}+g^{\prime 2}\right) c_{z \square}-g^{\prime 2}\left(g^{2}+g^{\prime 2}\right) c_{z z}+\right.
$$

basis:

$$
\left.+e^{2} g^{\prime 2} c_{\gamma \gamma}+g^{\prime 2}\left(g^{2}-g^{\prime 2}\right) c_{z \gamma}\right],
$$

$$
\begin{equation*}
\delta \kappa_{\gamma}=-\frac{g^{2}}{2}\left(c_{\gamma \gamma} \frac{e^{2}}{g^{2}+g^{\prime 2}}+c_{z \gamma} \frac{g^{2}-g^{\prime 2}}{g^{2}+g^{\prime 2}}-c_{z z}\right) . \tag{A.3}
\end{equation*}
$$

10 Operators for Higgs + TGC

E.g:

SILH' basis

In the Higgs basis: $\quad \delta c_{z}, c_{z z}, c_{z \square}, c_{\gamma \gamma}, c_{z \gamma}, c_{g g}, \delta y_{u}, \delta y_{d}, \delta y_{e}, \lambda_{z}$.
In terms of aTGC: $\quad \delta c_{z}, c_{\gamma \gamma}, c_{z \gamma}, c_{g g}, \delta y_{u}, \delta y_{d}, \delta y_{e}, \delta g_{1, z}, \delta \kappa_{\gamma}, \lambda_{z}$.

Example: LEP-2 + Higgs global fit

Falkowski, Gonzalez-Alonso, Greljo, D.M. 1508.00581

Higgs basis [YR4 LHCHXSWG 2016]	$\left(\begin{array}{l}\delta c_{z} \\ c_{z z} \\ c_{z \square} \\ c_{\gamma \gamma} \\ c_{z \gamma} \\ c_{g g} \\ \delta y_{u} \\ \delta y_{d} \\ \delta y_{e} \\ \lambda_{z}\end{array}\right)$		$\left(\begin{array}{c}-0.02 \pm 0.17 \\ 0.69 \pm 0.42 \\ -0.32 \pm 0.19 \\ 0.009 \pm 0.015 \\ 0.002 \pm 0.098 \\ -0.0052 \pm 0.0027 \\ 0.57 \pm 0.30 \\ -0.24 \pm 0.35 \\ -0.12 \pm 0.20 \\ -0.162 \pm 0.073\end{array}\right)$	

Warsaw

$$
\left(\begin{array}{rl}
c_{H} & =0.11 \pm 0.15 \\
c_{T} & =0.034 \pm 0.021 \\
c_{W B} & =0.34 \pm 0.20 \\
c_{W W} & =0.69 \pm 0.43 \\
c_{B B} & =0.69 \pm 0.42 \\
c_{G G} & =-0.0052 \pm 0.0027 \\
\hat{c}_{u} & =0.65 \pm 0.32 \\
\hat{c}_{d} & =-0.16 \pm 0.23 \\
\hat{c}_{e} & =-0.03 \pm 0.13 \\
c_{3 W} & =0.63 \pm 0.29
\end{array}\right)
$$

1008.4884
(with a different notation)

SILH'

$$
\left(\begin{array}{rl}
s_{H} & =0.02 \pm 0.17 \\
\frac{1}{2}\left(s_{W}-s_{B}\right) & =0.37 \pm 0.30 \\
s_{H W} & =-0.69 \pm 0.43 \\
s_{H B} & =-0.68 \pm 0.42 \\
s_{B B} & =0.094 \pm 0.015 \\
s_{G G} & =-0.0052 \pm 0.0027 \\
\hat{s}_{u} & =0.59 \pm 0.33 \\
\hat{s}_{d} & =-0.23 \pm 0.22 \\
\hat{s}_{e} & =-0.10 \pm 0.15 \\
s_{3 W} & =0.63 \pm 0.29
\end{array}\right)
$$

hep-ph/0703164 + 1308.2803

HISZ

$$
\left(\begin{array}{rl}
f_{H, 2} & =0.03 \pm 0.34 \\
f_{W} & =0.64 \pm 0.46 \\
f_{B} & =2.11 \pm 1.33 \\
f_{W W} & =-0.37 \pm 0.30 \\
f_{B B} & =0.36 \pm 0.29 \\
f_{G G} & =0.41 \pm 0.21 \\
f_{u} & =-0.83 \pm 0.46 \\
f_{d} & =0.32 \pm 0.31 \\
f_{e} & =0.14 \pm 0.20 \\
f_{3 W} & =-2.53 \pm 1.14
\end{array}\right)
$$

Phys.Rev. D48 (1993) 2182-2203

Such a fit can be rotated in any basis.

LEP-2 + Higgs global fit

The other EFT coefficients have been marginalised.

Combining Higgs and diboson data provides much stronger constraints.

$W W / W Z$ production at LHC

Taken at face value, LHC already provides much stronger constraints than LEP.
[Tilman et al. 1604.03105]

(these operators generate two aTGC)
However, the validity of the EFT assumption is more delicate and has to be considered carefully, see discussion by Francesco.

Important observables for the aTGC

Diboson: - distributions in $\mathrm{m}_{\mathrm{vv}}, \mathrm{p}_{\mathrm{T}}(\mathrm{V})$, $\mathrm{m}_{\ell \ell}$, etc..

Higgs: - VH: $\quad \mathrm{p}_{\mathrm{T}}(\mathrm{V})$, mvv distr.

- VBF: $\mathrm{p}_{\mathrm{T}}\left(\mathrm{j}_{1}\right), \mathrm{p}_{\mathrm{T}}\left(\mathrm{j}_{2}\right)$ distr.
- $\mathrm{h} \rightarrow 4 \ell$: mee distr.

