Beam developments, Nanolab and target production

Sebastian ROTHE EN-STI-RBS

Target and ion Source Development (TISD) mandate

J.Ballof Y.Martinez T.Stora F.Boix Pamies S.Rothe J.Ramos Providing a large choice of **intense** and **pure** radioactive beams Constant development required to keep ISOLDE at the forefront of RIB facilities

- target and ion source units
- target materials
- beam interactions (p2n converter)
- ion source design / mode of operation shared with ISBM group

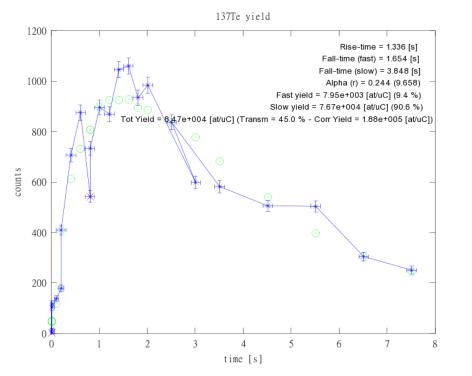
- yield & release study
- ion source efficiency
- measurements
- prototype tests

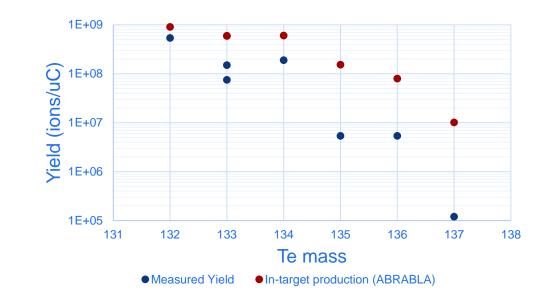
Sharing same resources as the ISOLDE physics program

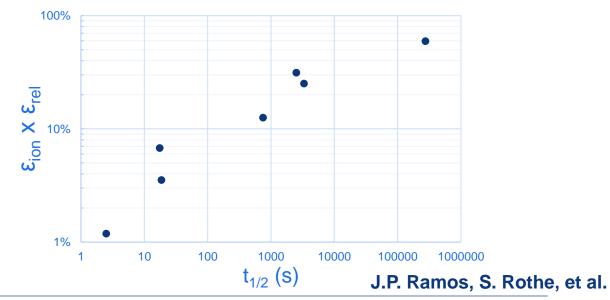
- WORKSHOP: target unit production
- OFFLINE: target quality control
- ISOLDE: beamtime

Outline

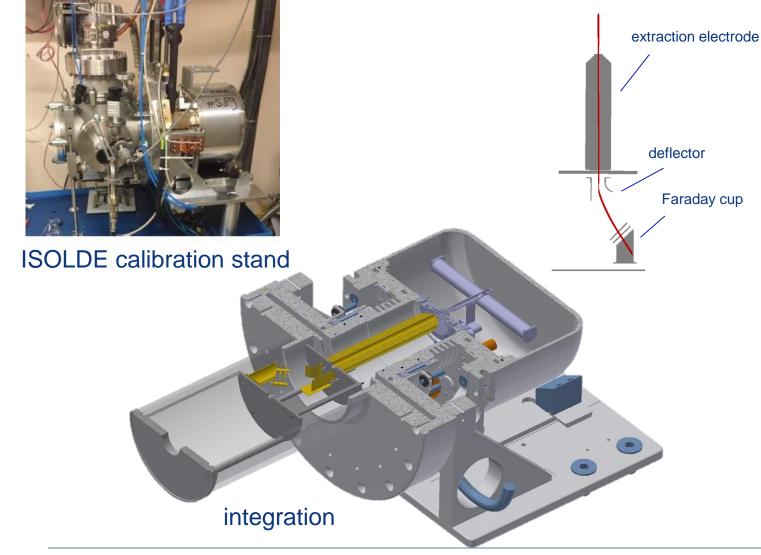
- Beam developments
 - LIEBE tests
 - Ion Source teststand
 - p2n Converter
- Nanolab
- Target Production
 - Target schedule 2017
 - Documentation


Expected TISD @ ISOLDE as presented to GUI


- Sc: Ti foils (CF4, RILIS)
- Te: yields with RILIS
- M(CO)x formation @ MEDICIS irradiation point
- ThO felt + Negative ion source
- LIEBE @ GPS-online
- STAGISO beam test
- Si from UCx
- TiC-CNT (pending safety clearance)


Te yield measurements

A (Te)	t1/2	Te Yield	Cs yield	t1/2	A (Cs)
132	76.3	5.40E+08		6.47 d	132
133	12.5 m	7.50E+07		stable	133
133m	55.4 m	1.50E+08		stable	133
134	41.8 m	1.90E+08	1.10E+09	2.90 h	134m
135	18.6 s	5.40E+06	5.50E+08	53 m	135m
136	17.5 s	5.40E+06	5.30E+08	19 s	136m
137	2.5 s	1.20E+05		30.17 y	137



Total efficiency = Ionization efficiency x release efficiency

Dedicated test stand for ion source development

Main features:

- ion beam extraction and detection
- residual gas analyzer (RGA)
- automated control and data recording

First application:

- negative ion source development
- investigation of source poisoning and regeneration

Future plans:

- long-term performance studies
- thermal stress tests
- destructive tests -> operational limits & failure mode analysis

6

David Leimbach

LIEBE Project

Present activities	Description	Schedule
HEX test	Experimentally confirm the power extracted by the heat exchanger.	Under preparation, starting 2nd week of July.
Diffusion chamber vacuum test	Test to confirm good enclosement of the chamber.	Ongoing: Difficulties due to the geometry of the target.
Pump vibration tests at IPUL		Ongoing: finishing by end of July

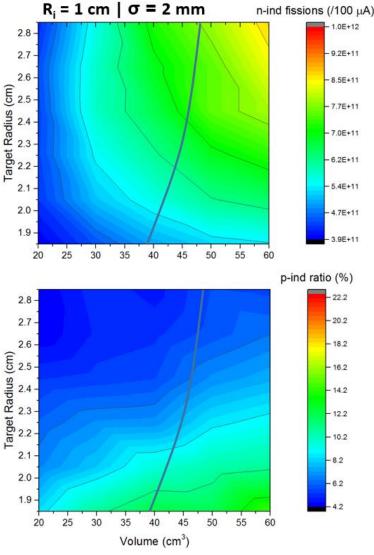
Image of the installation to test the HEX

Actual state of the LIEBE target ongoing vacuum tests Slide curtesy of Ferran Boix Pamies

LIEBE Project

Future activities

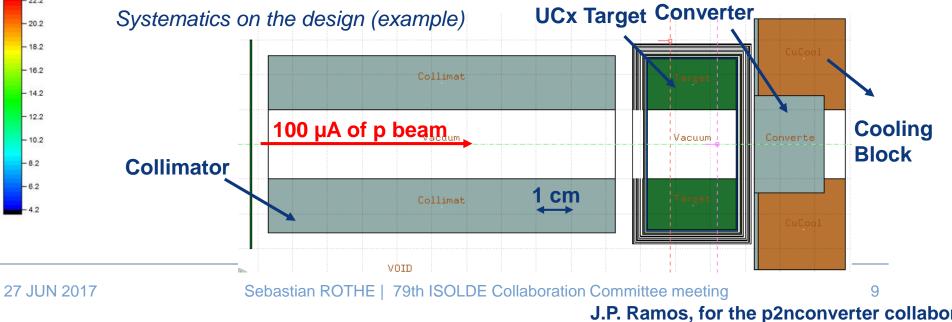
Description


Task resume and total estimated duration of the project

Assembly	Front wallLateral and top flanges	Starting after the diffusion chamber vacuum test, total work time expected of 2 weeks	Task Name	Duration
	 HEX external connections Pump channel and collar LDE deposit 		LIEBE project Target assembly	108 days 1 wk
	LBE depositHeating elements		Target vacuum test	16 days
Vacuum tests	Confirmation of good enclosement	t 4 days on average per test, total of 16 work days	Heating elements installation	1 wk
	for every assembly		HEX test	1 wk
			Pump tests	1 wk
Pump tests	 Confirmation of good functioning of the pump 	1 week of work is estimated	Offline test	72 days
Offline tests	• Target and pump coupling tests with the front end.	Starting after full	Offline tests starting mid-August	
	 Calibration of the heating elements. Source tests. 	assembly of the target. Duration: 72 days	LIEBE target ready to go online mid- November	
			Slide: Ferran Boi	x Pamies

Schedule

p2n converter


TRIUMF Converter collaboration

7.5 kW of deposited power in a 2 cm length tungsten cylinder

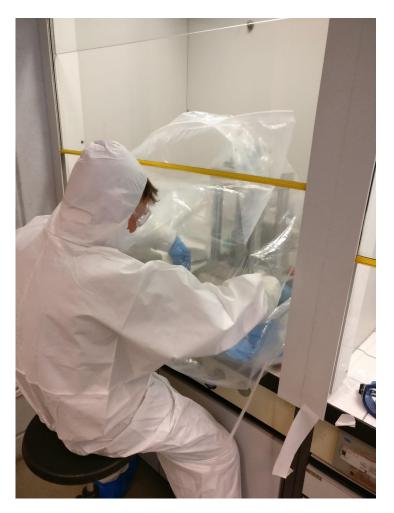
- Very challenging to cool
- ANSYS is being used to simulate the best solution to extract all the power Offline experiments
- test a large diameter target oven
- power deposition/cooling on tungsten and copper

Using FLUKA, systematic studies on the neutronics to minimize proton induced fissions and maximize neutron induced fissions are on going

Soon the same type of study will be done for ISOLDE

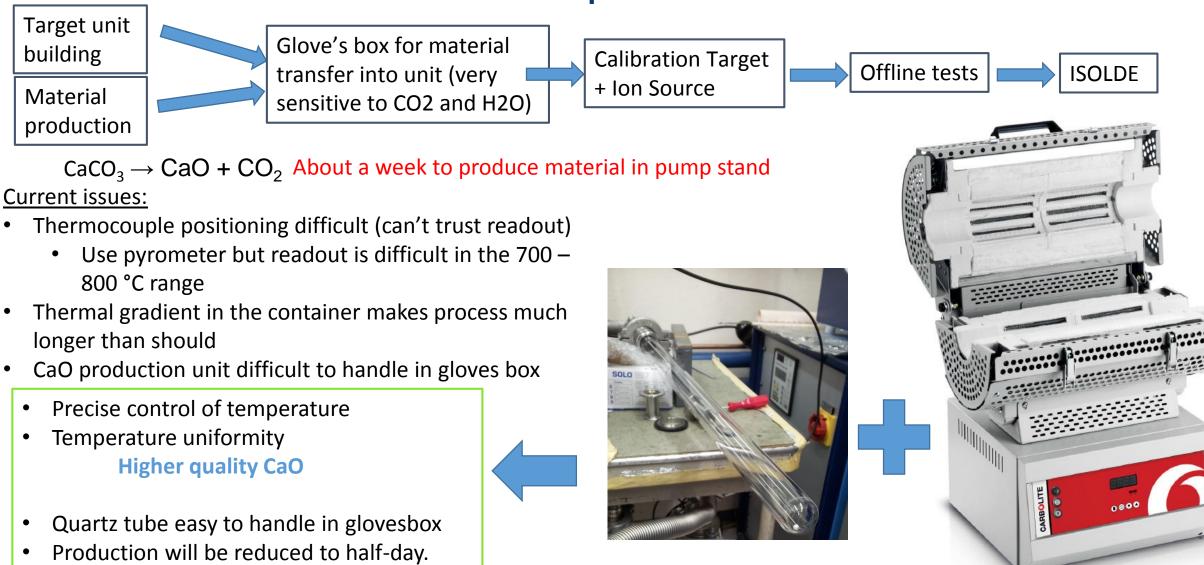
Nanolab

Option 2


- Funding secured
- Connection of ventilation foreseen in 2019

MWCNT Target production

- CERN has forbidden any handling of nanomaterial
- Nanomaterials are requested at ISOLDE for physics (in this case MWCNT)
- Powder technology laboratory in EPFL, has a class "nano 2"
- Accordingly to EPFL specifications "nano 3" is needed to handle MWCNT (need to have the nanomaterial sealed in glovesbox)
- Glove's bag was bought from Sigma Aldrich and used instead of Glove's box.
- Possible solution to lift the prohibition of handling nanomaterials



Successful press of full batch of MWCNT for ISOLDE target #606

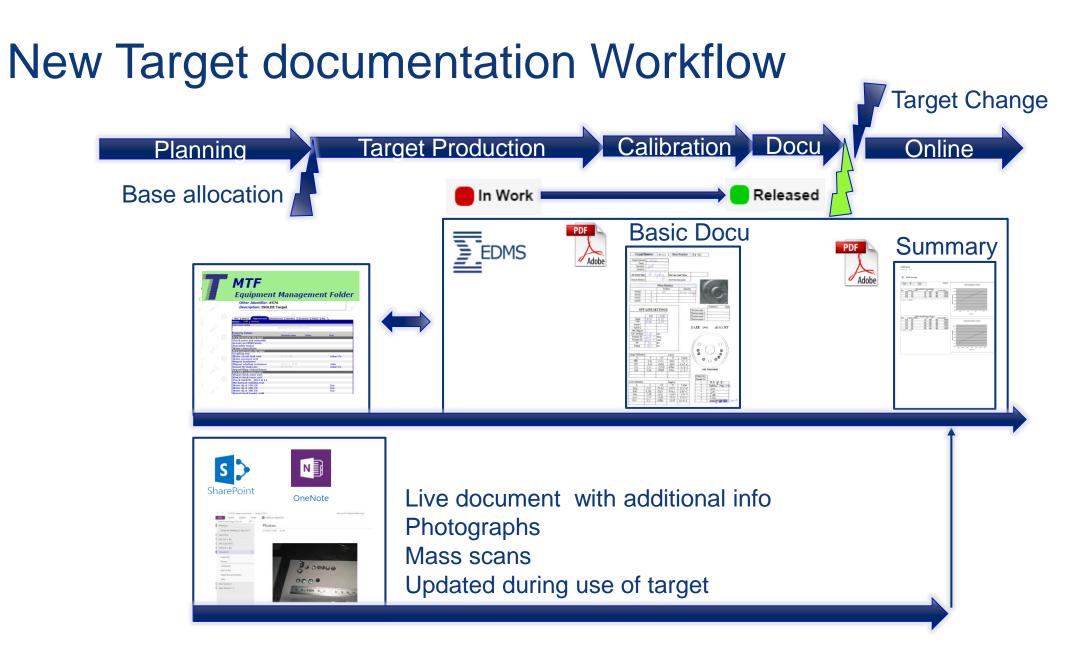
J.P. Ramos, B. Crepieux, T. Stora, et al.

Dedicated oven for CaO production

Sebastian ROTHE | 79th ISOLDE Collaboration Committee meeting

J.P. Ramos, et al.

Target Production Schedule


Collaboration Workspaces			Newsfeed OneDriv	re Sites Sebastian Rothe - 🔅
BROWSE TASKS LIST Notebook		April 2017	May 2017	🜍 SHARE 🏠 FOLLOW
Documents		#597 UC n Ta 10/3 - 10/4 12/4 - 21/4	#599 TiFoil #600 U #601 UC 2/5 - 10/5 11/5 - 17, 17/5 - 24/5	#604 UC n cq Ta Finish 26/5 - 16/6 16/6
Tasks		#595 U	#606 MW #602 UC	W #603 UC n
Calendar		7/4 - 13/4	4/5 - 12/5 19/5 - 26	5/5 29/5 - 6/6
Site Contents	↔ new task or edit this list	t		
EDIT LINKS	All Tasks Calendar Completed	Find an item		
	🗸 📝 Task Name Du	ue Date MTF OneNote EDMS	Assigned To Target Ma	terial Ion Source Transfer line p2n co
	✓ #594 21 RILIS	March AQ000206 #594 EDM	5 🗌 Michael Owen empty containe	MK1 - Ta Ta No r
	✓ # 595 UC ••• 13 n Ta	April AQ000214 #595 EDM	5 🗌 Michael Owen UC	MK1 - Ta Ta Yes
	✓ #596 ••• 10 CaO VD7) April AQ000229 #596 EDM:	5 🗆 Michael Owen CaO	VD7 No
	✓ # 597 UC 21 n Ta	April AQ000222 #597 EDM	5 🗆 Bernard Crepieux UC	MK1 - Ta Ta Yes

Published in dedicated website:

cern.ch/isolde-targets

point of entry for documentation (login required)

