

Università degli Studi di Milano

Bottom quark effects on the ptZ distribution and their impact on the MW determination

Alessandro Vicini University of Milano, INFN Milano

Theory Institute "LHC and the Standard Model: Physics and Tools" CERN, June 22nd 2017

preliminary results of a work in collaboration with:

E.Bagnaschi, F.Maltoni, M.Zaro

Relevance of the ptZ distribution for the MW determination

the very high precision ptZ measurement

- · challenges the theoretical predictions at the sub percent level
- offers the possibility to tune the non-perturbative (NP) models describing the low-pt part of the ptZ spectrum
- \rightarrow these models can be then used in the simulation of CC-DY

Relevance of the ptZ distribution for the MW determination

the very high precision ptZ measurement

- · challenges the theoretical predictions at the sub percent level
- offers the possibility to tune the non-perturbative (NP) models describing the low-pt part of the ptZ spectrum
- \rightarrow these models can be then used in the simulation of CC-DY

• the bottom quark contribution to ptZ, almost absent in the ptW case,

may introduce spurious unwanted contributions in the ptW distribution, via the NP models

 \rightarrow in turn affect the MW determination

Relevance of the ptZ distribution for the MW determination

the very high precision ptZ measurement

- · challenges the theoretical predictions at the sub percent level
- offers the possibility to tune the non-perturbative (NP) models describing the low-pt part of the ptZ spectrum
- \rightarrow these models can be then used in the simulation of CC-DY

- encoded in these INP models are a matter of debate $\frac{1}{2}$
- the bottom quark contribution to ptZ, almost absent in the ptW case, may introduce spurious unwanted contributions in the ptW distribution, via the NP models
 - \rightarrow in turn affect the MW determination
- an improved partonic description of the bottom quark contribution to ptZ may
 - \rightarrow increase the overall precision of the theoretical predictions
 - \rightarrow reduce the amount of information to be encoded in the NP models
 - → reduce the differences between bottom and the other quarks increasing the universality of the effects included in the NP param's

p[∥]_⊤ [GeV]

Strategy to improve the ptZ description

we consider the processes

```
p p \rightarrow e+e- + X Drell-Yan (lepton-pair production inclusive over extra radiation) 5FS p p \rightarrow e+e-b bbar (associated Z/\gamma * production) 4FS
```

we develop a combination which exploits the advantages of the 5FS and 4FS descriptions

we evaluate the combination using tools with NLO-QCD + QCD-PS accuracy (POWHEG and aMC@NLO) and discuss the associated QCD uncertainties

we develop a toy procedure to assess the impact on MW of the improvement in the ptZ description

Bottom quark contributions to the ptZ distribution in the 5FS

· in the 5FS the bottom quark is treated as a massless parton

- the bottom density in the proton resums via DGLAP eqs large collinear logs
- the masslessness of the bottom may affect some kinematical distributions where the quark mass acts as a natural regulator of the transverse d.o.f.

e.g. the ptZ distribution with ptZ ~ O(mb) ~ O(5 - 20 GeV)

Bottom quark contributions to the ptZ distribution in the 5FS

· in the 5FS the bottom quark is treated as a massless parton

- the bottom density in the proton resums via DGLAP eqs large collinear logs
- the masslessness of the bottom may affect some kinematical distributions where the quark mass acts as a natural regulator of the transverse d.o.f.

the PDF evolution starts for the heavy quarks

at $Q \sim mq$

- \rightarrow in the 5FS the bottom contrib. to the ptZ spectrum
 - is harder than the one of light quarks

Alessandro Vicini - University of Milano

Bottom quark contributions to the ptZ distribution in the 5FS

· in the 5FS the bottom quark is treated as a massless parton

- the bottom density in the proton resums via DGLAP eqs large collinear logs
- the masslessness of the bottom may affect some kinematical distributions where the quark mass acts as a natural regulator of the transverse d.o.f.

• the PDF evolution starts for the heavy quarks

at $Q \sim mq$

 \rightarrow in the 5FS the bottom contrib. to the ptZ spectrum

is harder than the one of light quarks

initial state quark	cross section (pb)	%
u	374.44 ± 0.62	35.0
d	391.15 ± 0.63	36.5
C	91.44 ± 0.34	8.6
S	170.43 ± 0.45	15.9
b	43.13 ± 0.26	4.0
total	1070.58 ± 0.86	100.0

 given the exp error below 0.5% in a large range the bottom contribution of O(4%)

→ we need a prediction of the b contribution with a precision at the O(10%) level

4

Z b bbar associated production in the 4FS ($pp \rightarrow e^+e^-b$ bbar)

in the 4FS the bottom quark

is absent in the proton

• it can be produced in the final state as a massive particle

 \rightarrow improved description of the kinematical distributions

 \cdot at LO the collinear logs are included only at fixed order

Z b bbar associated production in the 4FS ($pp \rightarrow e^+e^-b$ bbar)

in the 4FS the bottom quark

· is absent in the proton

 \cdot it can be produced in the final state as a massive particle

 \rightarrow improved description of the kinematical distributions

• at LO the collinear logs are included only at fixed order

ptZ distribution (inclusive over b quarks)

- · regular when $ptZ \rightarrow 0$, but still sensitive to large log effects
- the process has a large NLO K-factor
- · large multiple gluon emission effects via QCD Parton Shower, for ptZ < 50 GeV

ptZ distribution in the 4FS ($pp \rightarrow e^+e^-b$ bbar): QCD uncertainties

both codes (POWHEG and aMC@NLO)

have NLO-QCD + QCD-PS accuracy

- canonical PDF uncertainty and renormalization/factorization scale variations
- two different matching schemes: MC@NLO and POWHEG
- aMC@NLO: different options for the shower scale variable and for its range
- POWHEG: different values of the scale h of the damping factor in the Sudakov (and different settings of scalup in the remnant event contribution)
- different QCD Parton Shower models: PYTHIA8 and HERWIG++

• except in the first bin, matching+shower uncertainties at the 10% level, scale+PDF at the 20% level 6 CERN, June 22nd 2017

Improved prediction of the ptZ distribution: combining 5FS and 4FS

- the prediction of the ptZ distribution, inclusive over radiation, is split into two contributions with and without B hadrons in the final state
- we rely on the 5FS for the contributions without B hadrons (light quarks ~ massless partons)
 4FS for the contributions with B hadrons (exact massive kinematics +NLOPS acc.)
 and we combine the two results

Improved prediction of the ptZ distribution: combining 5FS and 4FS

- the prediction of the ptZ distribution, inclusive over radiation, is split into two contributions with and without B hadrons in the final state
- we rely on the 5FS for the contributions without B hadrons (light quarks ~ massless partons)
 4FS for the contributions with B hadrons (exact massive kinematics +NLOPS acc.)
 and we combine the two results
- · in the 5FS B hadrons are generated by the QCD PS with two mechanisms:
 - i) presence of a bottom quark in the initial state (b bbar and bg initiated subprocesses)
 - ii) gluon splitting into b bbar
- → the contribution without B hadrons is computed in the 5FS imposing a veto on the presence of B hadrons in the event analysis
- the contribution with B hadrons is computed in the 4FS by definition the process $pp \rightarrow e^+e^-b$ bbar contains bottom quarks in the final state additional b bbar pairs may be produced by gluon splitting

Improved prediction of the ptZ distribution: combining 5FS and 4FS

- the prediction of the ptZ distribution, inclusive over radiation, is split into two contributions with and without B hadrons in the final state
- we rely on the 5FS for the contributions without B hadrons (light quarks ~ massless partons)
 4FS for the contributions with B hadrons (exact massive kinematics +NLOPS acc.)
 and we combine the two results
- in the 5FS B hadrons are generated by the QCD PS with two mechanisms:
 - i) presence of a bottom quark in the initial state (b bbar and bg initiated subprocesses)
 - ii) gluon splitting into b bbar
- → the contribution without B hadrons is computed in the 5FS imposing a veto on the presence of B hadrons in the event analysis
- the contribution with B hadrons is computed in the 4FS by definition the process $pp \rightarrow e^+e^-b$ bbar contains bottom quarks in the final state additional b bbar pairs may be produced by gluon splitting

$$\frac{d\sigma^{best}}{dp_{\perp}^{l+l^-}} = \frac{d\sigma^{\text{5FS-Bveto}}}{dp_{\perp}^{l+l^-}} + \frac{d\sigma^{4FS}}{dp_{\perp}^{l+l^-}}$$

Improved prediction of the ptZ distribution

$$\mathcal{R}(p_{\perp}^{l^+l^-}) = \left(\frac{1}{\sigma_{fid}^{best}} \frac{d\sigma^{best}}{dp_{\perp}^{l^+l^-}}\right) \cdot \left(\frac{1}{\sigma_{fid}^{5FS}} \frac{d\sigma^{5FS}}{dp_{\perp}^{l^+l^-}}\right)^{-1}$$

 $\cdot \mathcal{R}$ expresses the distortion of the improved ptZ, with respect to the full plain 5FS prediction

· for a given B-veto distribution the 4FS part is added in different approximations of Shower scale (aMC@NLO) or damping factor scale (POWHEG)

to tune the QCD-PS to perfectly reproduce the experimental data (tune2)

$$\frac{1}{\sigma_{fid}^{exp}} \frac{d\sigma^{exp}}{dp_{\perp}^{l+l^-}} = \left. \frac{1}{\sigma_{fid}^{best}} \frac{d\sigma^{best}}{dp_{\perp}^{l+l^-}} \right|_{\texttt{tune2}} = \left. \frac{1}{\sigma_{fid}^{5FS}} \left. \frac{d\sigma^{5FS}}{dp_{\perp}^{l+l^-}} \right|_{\texttt{tune1}} = \left| \frac{1}{\mathcal{R}(p_{\perp}^{l+l^-})} \frac{1}{\sigma_{fid}^{best}} \left. \frac{d\sigma^{best}}{dp_{\perp}^{l+l^-}} \right|_{\texttt{tune1}} \right|_{\texttt{tune1}}$$

• $\mathcal{R}(p_{\perp})$ expresses the difference of the predictions obtained in the best partonic approximation convoluted respectively with tune1 and tune2

$$\begin{pmatrix} p_{\perp}^{l+l^{-}} \end{pmatrix} = \left(\frac{1}{\sigma_{fid}^{best}} \frac{d\sigma^{best}}{dp_{\perp}^{l+l^{-}}} \Big|_{tuneX} \right) \cdot \left(\frac{1}{\sigma_{fid}^{5FS}} \frac{d\sigma^{5FS}}{dp_{\perp}^{l+l^{-}}} \Big|_{tuneX} \right)^{-1}$$

$$= \left(\frac{1}{\sigma_{fid}^{best}} \frac{d\sigma^{best}}{dp_{\perp}^{l+l^{-}}} \Big|_{tune1} \right) \cdot \left(\frac{1}{\sigma_{fid}^{best}} \frac{d\sigma^{best}}{dp_{\perp}^{l+l^{-}}} \Big|_{tune2} \right)^{-1}$$

• we use $\mathcal{R}(p_{\perp})$ to reweigh the CC-DY events according to their ptW value

 \mathcal{R}

Alessandro Vicini - University of Milano

Impact on the CC-DY observables of b-quark effects

The CC-DY observables are evaluated in the plain 5FS The change from tune1 to tune2 in the PS is mimicked by reweighing the events with $\mathcal{R}(p_{\perp})$ The impact on MW is estimated by template fit of the reweighed distributions (red/blue/green), with templates evaluated in the plain 5FS (light brown)

in the high-ptlep tail non negligible effect of the matching with QCD_PS

10

Bottom quark effects on the MW determination

- · in the pt_lep case, the shifts are negative and reach at most -5 MeV (fixed order NLO)
- matching NLO-QCD with QCD-PS reduces the size of the shift
- details of matching and of QCD-PS implementation yield an uncertainty of O(I MeV) further improvements expected in the statistical quality of the fits

Alessandro Vicini - University of Milano

CERN, June 22nd 2017

Dependence of the MW shifts on the fit window

- the outcome of the template fit depends on the fit window, especially on the upper limit
- above the jacobian peak, the NLOPS distortion changes slope at ptlep ~ 45 GeV, pulling the χ^2 in opposite directions in the intervals [40,45] and [45,50] GeV
- above the jacobian peak, the fixed order NLO becomes flat above ptlep ~ 47 GeV stabilising the negative shift due to the interval [40,47]

Conclusions

- a combination of 5FS and 4FS results improves the description of the bottom quark contributions to the ptZ distribution with respect to the plain 5FS approach

- a detailed discussion of the QCD effects and uncertainties is crucial:

- → matching NLO-QCD with QCD-PS has a sizeable impact on the distributions
- → matching and Parton Shower uncertainties are under control but not negligible

 assuming that the difference between plain 5FS and improved description can be reabsorbed in a new Parton Shower tune then it is possible to estimate the impact on CC-DY of this improved NC-DY description

• MW extracted from pt_lep distribution is sensitive to the bottom quark improvement with 4FS at NLOPS, the shifts do not exceed the 5 MeV level in size the uncertainty on the shifts can be estimated at the few MeV level

- a study of the bottom quark effects, as a function of lepton-pair invariant mass and rapidity is in progress

back-up slides

Estimate of the effective upper limit for additional radiation

$$\begin{split} L &= \log\left(\frac{M_{l+l-}^2}{m_b^2} \, \frac{(1-z_i)^2}{z_i}\right) \quad \text{with} \quad z_i = \frac{M_{l+l-}^2}{s_i}, \quad s_i = (q_+ + q_- + k_i)^2\\ \overline{M} &\equiv M_{l+l-} \, \frac{(1-z_i)}{\sqrt{z_i}} \, . \end{split}$$

the peak of $d\sigma/dMbar$

hints the value of a typical energy scale of the 4FS process

Q_{sh} is extracted in aMC@NLO according to a probability distribution depends on the choice of one variable and on the details of PS

scalup in POWHEG is evaluated as Btilde events: the pt of the first emission in the remnant events: different criteria (pt of first emission, minimum hardness of the emitting partons,) it can be fixed to a constant value or extracted from a distrib.) Bottom contributions to ptZ in different schemes and approximations

- 5FS: b-initiated subprocesses + QCD-PS (technical benchmark)
- 4FS: fixed-order NLO prediction
- 4FS: NLO-QCD + QCD-PS (Pythia 8) $Q_{sh} = \sqrt{\hat{s}}/2$ $Q_{sh} = \sqrt{\hat{s}}/4$

• 4FS: sizeable impact of higher-order corrections via Parton Shower beyond NLO fixed-order NLO is not sufficient for a precise description of the shape of the distribution

(partial) Bibliography on 4FS calculations

· NLO-QCD corrections to Z production in association with heavy quarks

J.M. Campbell and R.K. Ellis, hep-ph/0006304

J. M. Campbell, R. K. Ellis, F. Maltoni, and S. Willenbrock, hep-ph/0312024, hep-ph/0510362,

F. Maltoni, T. McElmurry, and S. Willenbrock, hep-ph/0505014

F. Febres Cordero, L. Reina, and D. Wackeroth, arXiv:0806.0808, arXiv:0906.1923

· Z production in association with heavy quarks with NLOPS-QCD accuracy

R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau, and P. Torrielli, arXiv:1106.6019

F. Krauss, D. Napoletano, and S. Schumann, arXiv:1612.04640

- relations between 4FS and 5FS in the evaluation of the total cross section for the production of a boson (Higgs, Z) in association with bottom quarks

R. Harlander, M. Kr amer and M. Schumacher, arXiv:1112.3478

F. Maltoni, G. Ridolfi, and M. Ubiali, arXiv:1203.6393

M. Bonvini, A.S. Papanastasiou and F.J. Tackmann, arXiv:1508.03288

M. Lim, F. Maltoni, G. Ridolfi, and M. Ubiali, arXiv:1605.09411.

S. Forte, D. Napoletano, and M. Ubiali,arXiv:1508.01529, arXiv:1607.00389

apologies for any unintentional omission