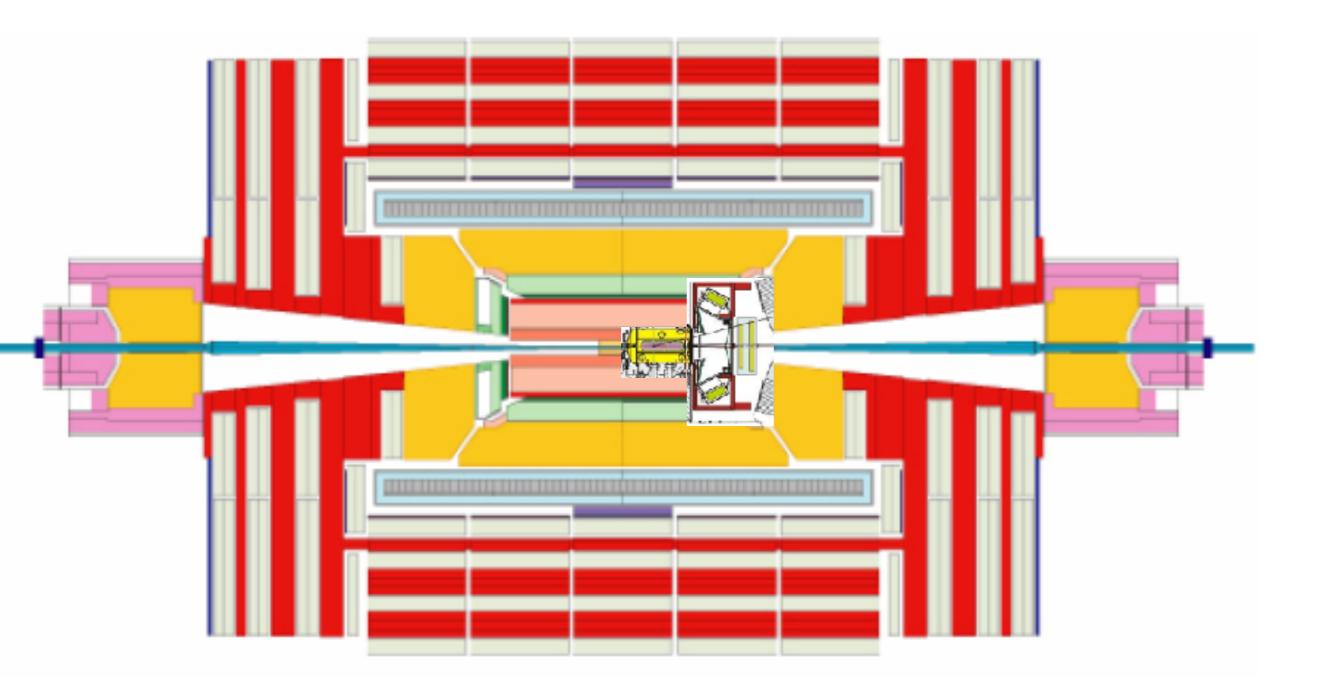


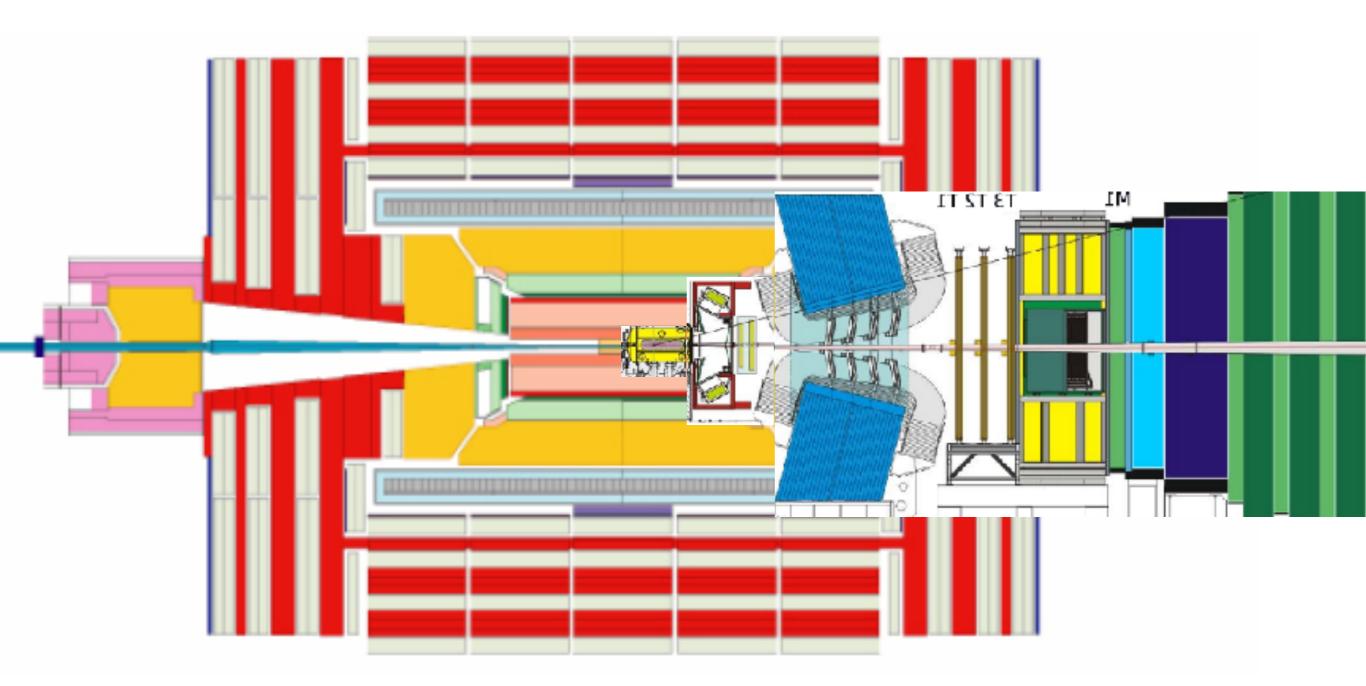
Plans for a LHCb mw measurement

Mika Vesterinen University of Oxford W mass workshop, CERN, 22/6/2017

With input from O. Lupton, and largely based on EPJC (2015) 75: 601 with G. Bozzi, L. Citelli, A. Vicini.

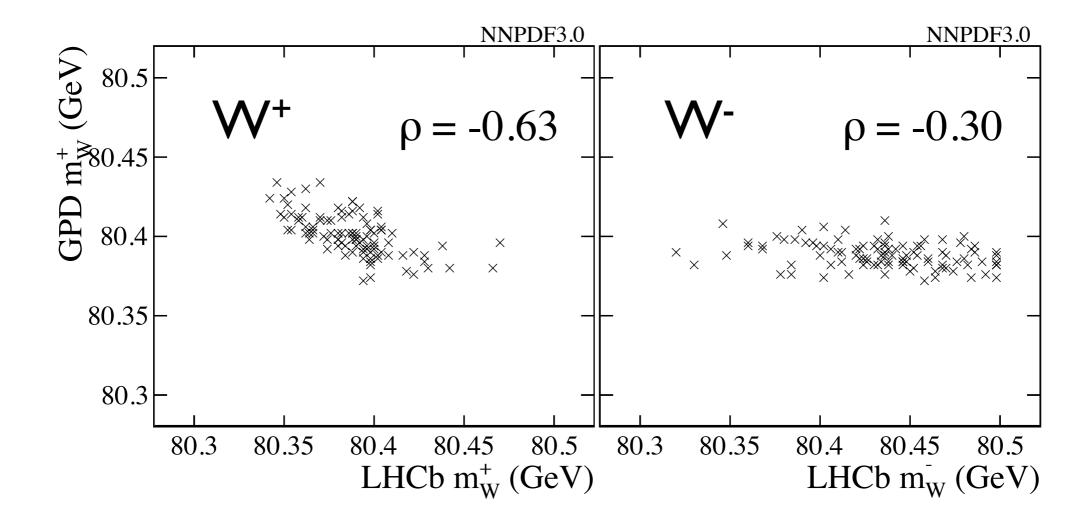

Why at LHCb?

Surely not? Smaller kinematic acceptance than ATLAS/CMS. No missing p_T , hence poorer purity.


The unique kinematic acceptance is exactly WHY we want to measure m_W with LHCb.

Statistics isn't an issue. LHCb will have ~10MW decays by the end of Run-II.

Complementarity


Complementarity

EPJC (2015) 75: 601

Effect on PDF uncertainties

(Assuming only p_T^{lept} based measurements)

The lepton-acceptance driven PDF uncertainty is highly anti correlated between central and forward m_W measurements.

Table 5

The uncertainties on different LHC averages for m_W . The separate experimental and PDF uncertainties are listed, as are the weights that minimise the total uncertainty

Scenario	Experiments	δm_W	(MeV)		α
		Tot	Exp	PDF	
Default	$2 \times \text{GPD} + \text{LHCb}$	9.0	4.7	7-7	(0.30, 0.44, 0.22, 0.04
Default	$1 \times \text{GPD} + \text{LHCb}$	10.1	6.5	7-7	(0.31, 0.40, 0.25, 0.04)
Default	$2 \times GPD$	12.0	5.8	10.5	(0.28, 0.72, 0, 0)
PDF4LHC(3-sets)	$2 \times \text{GPD} + \text{LHCb}$	13.6	4.8	12.7	(0.43, 0.41, 0.12, 0.04)
PDF4LHC(3-sets)	$1 \times \text{GPD} + \text{LHCb}$	14.6	7.3	12.7	(0.43, 0.40, 0.12, 0.04
PDF4LHC(3-sets)	$2 \times GPD$	17.7	5.5	16.9	(0.50, 0.50, 0, 0)
$\delta_{\exp}^{LHCb} = 0$	$2 \times \text{GPD} + \text{LHCb}$	8.7	4.0	7-7	(0.31, 0.41, 0.24, 0.04)
$\delta_{\exp}^{LHCb} = 0$	$1 \times \text{GPD} + \text{LHCb}$	9.8	5.9	7.9	(0.31, 0.37, 0.28, 0.04)
$\delta_{\exp}^{LHCb} = 0$	$2 \times GPD$	12.0	5.8	10.5	(0.28, 0.72, 0, 0)
$\delta_{\exp}^{\text{GPD}} = 0$	$2 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7-7	(0.29, 0.48, 0.19, 0.04
$\delta_{\exp}^{\text{GPD}} = 0$	$1 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7-7	(0.29, 0.48, 0.19, 0.04
$\delta_{\exp}^{\text{GPD}} = 0$	$2 \times GPD$	10.5	0.1	10.5	(0.26, 0.74, 0, 0)
$\delta_{\rm PDF} = 0$	$2 \times \text{GPD} + \text{LHCb}$	4.6	4.6	0.0	(0.34, 0.34, 0.22, 0.10)
$\delta_{\rm PDF} = 0$	$1 \times \text{GPD} + \text{LHCb}$	5.8	5.8	0.0	(0.23, 0.23, 0.37, 0.17)
$\delta_{\rm PDF} = 0$	$2 \times GPD$	5.5	5.5	0.0	(0.50, 0.50, 0, 0)
$\delta_{exp}^{LHCb} \times 2$	$2 \times \text{GPD} + \text{LHCb}$	9.6	5.6	7-7	(0.29, 0.50, 0.17, 0.04)
$\delta_{exp}^{LHCb} \times 2$	$1 \times \text{GPD} + \text{LHCb}$	10.8	7.6	7-7	(0.30, 0.46, 0.20, 0.05
$\delta_{exp}^{LHCb} \times 2$	$2 \times GPD$	12.0	5.8	10.5	(0.28, 0.72, 0, 0)
$\delta_{exp}^{GPD} \times 2$	$2 \times \text{GPD} + \text{LHCb}$	11.2	7.9	8.0	(0.32, 0.35, 0.29, 0.04
$\delta_{exp}^{GPD} \times 2$	$1 \times \text{GPD} + \text{LHCb}$	13.9	10.5	9.0	(0.31, 0.26, 0.37, 0.05)
$\delta_{exp}^{GPD} \times 2$	$2 \times GPD$	15.6	11.5	10.6	(0.32, 0.68, 0, 0)
$\delta_{\rm PDF} \times 2$	$2 \times \text{GPD} + \text{LHCb}$	16.0	4.7	15.3	(0.30, 0.45, 0.21, 0.04)
$\delta_{\rm PDF} \times 2$	$1 \times \text{GPD} + \text{LHCb}$	16.7	6.7	15.3	(0.30, 0.44, 0.22, 0.04
$\delta_{\rm PDF} \times 2$	2 × GPD	21.7	5.9	20.9	(0.27, 0.73, 0, 0)

EPJC (2015) 75: 601

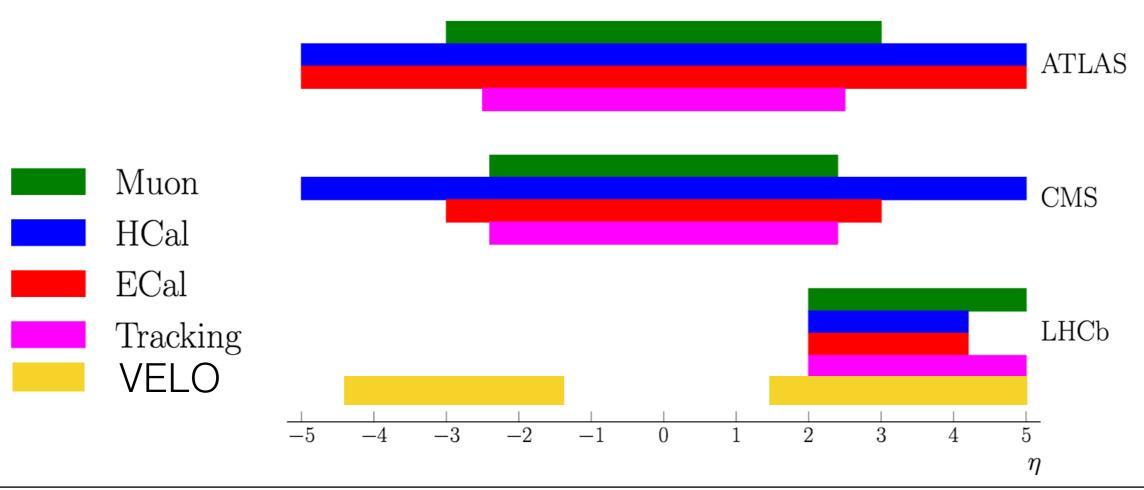
Scenario	Experiments	δm_W (MeV)			
		Tot	Exp	PDF	α
Default	2 × GPD + LHCb		4.7	7.7	(0.30, 0.44, 0.22, 0.04)

Even with a modest target for our experimental uncertainties, the LHCb measurement would improve the total uncertainty on the LHC average by ~30%.

	$1 \times \text{GPD} + \text{LHCb}$			7.9	(0.31, 0.37, 0.28, 0.04)
	$2 \times \text{GPD}$	12.0		10.5	(0.28, 0.72, 0, 0)
	$2 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7-7	(0.29, 0.48, 0.19, 0.04)
	$1 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7-7	(0.29, 0.48, 0.19, 0.04)
	$2 \times \text{GPD}$	10.5	0.1	10.5	(0.26, 0.74, 0, 0)
	$2 \times \text{GPD} + \text{LHCb}$	4.6	4.6		(0.34, 0.34, 0.22, 0.10)
	$1 \times \text{GPD} + \text{LHCb}$				(0.23, 0.23, 0.37, 0.17)
	$2 \times \text{GPD}$				(0.50, 0.50, 0, 0)
$\delta_{exp}^{LHCb} \times 2$	$2 \times \text{GPD} + \text{LHCb}$		5.6	7-7	(0.29, 0.50, 0.17, 0.04)
$\delta_{exp}^{LHCb} \times 2$	$1 \times \text{GPD} + \text{LHCb}$	10.8	7.6	7-7	(0.30, 0.46, 0.20, 0.05)
$\delta_{exp}^{LHCb} \times 2$	$2 \times \text{GPD}$	12.0		10.5	(0.28, 0.72, 0, 0)
$\delta_{exp}^{GPD} \times 2$	$2 \times \text{GPD} + \text{LHCb}$	11.2	7.9		(0.32, 0.35, 0.29, 0.04)
$\delta_{\rm exp}^{\rm GPD} \times 2$	$1 \times \text{GPD} + \text{LHCb}$	13.9	10.5		(0.31, 0.26, 0.37, 0.05)
$\delta_{\rm exp}^{\rm GPD} \times 2$	$2 \times \text{GPD}$	15.6	11.5	10.6	(0.32, 0.68, 0, 0)
$\delta_{\rm PDF} imes 2$	$2 \times \text{GPD} + \text{LHCb}$	16.0	4.7	15.3	(0.30, 0.45, 0.21, 0.04)
$\delta_{\rm PDF} imes 2$	$1 \times \text{GPD} + \text{LHCb}$	16.7	6.7	15.3	(0.30, 0.44, 0.22, 0.04)
$\delta_{\rm PDF} imes 2$	$2 \times \text{GPD}$	21.7	5.9	20.9	(0.27, 0.73, 0, 0)

EPJC (2015) 75: 601

Table 5


uncertainties on different LHC averages for m_W . The separate experimental and uncertainties are listed, as are the weights that minimise the total uncertainty

EPJC (2015) 75: 601

Experiments Even with a modest target for our experimental uncertainties, the LHCb measurement would improve the total uncertainty on the LHC average by ~30%. This study may be underselling LHCb since it assumes that ATLAS/CMS could perfectly veto events with $p_{T}(W) > 15 \text{ GeV}.$ It is obvious that we must carefully co-ordinate the treatment of correlated systematics so that we can best exploit our complementarity.

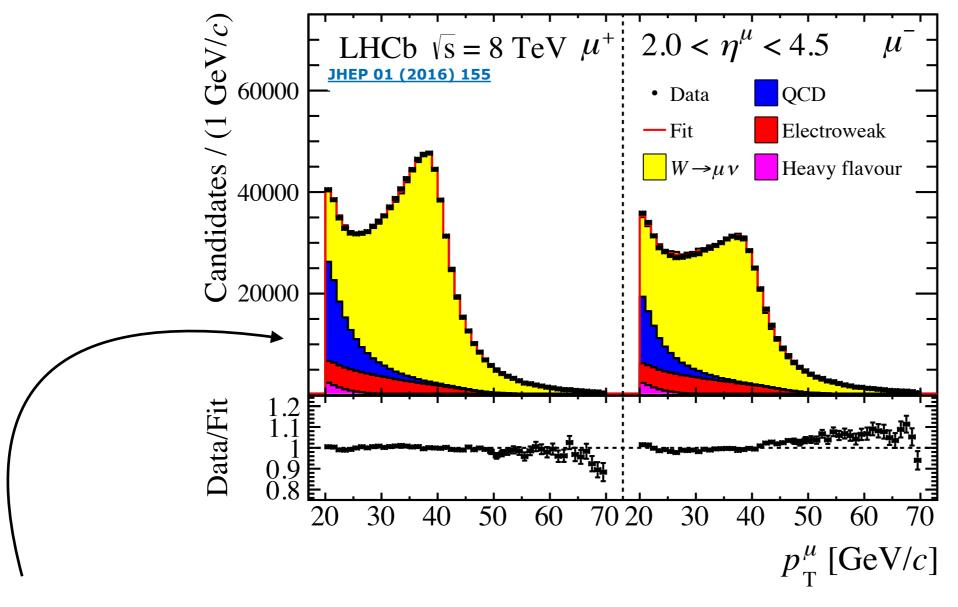
- Only with charged lepton p_T.
- Only with muons.
- Plan to proceed directly to 7,8,13 TeV analysis.
- (Limited?) use of recoil activity.

- Only with charged lepton p_T.
- Only with muons.
- Plan to proceed directly to 7,8,13 TeV analysis.
- (Limited?) use of recoil activity.

- Only with charged lepton p_T.
- Only with muons.
- Plan to proceed directly to 7,8,13 TeV analysis.
- (Limited?) use of recoil activity.

Preliminary studies indicate that a "LHCb-visible" missing p_T estimator is surprisingly effective in improving our purity, but of course we must worry about the modelling...

- Only with charged lepton p_T .
- Only with muons.
- Plan to proceed directly to 7,8,13 TeV analysis.
- (Limited?) use of recoil activity.

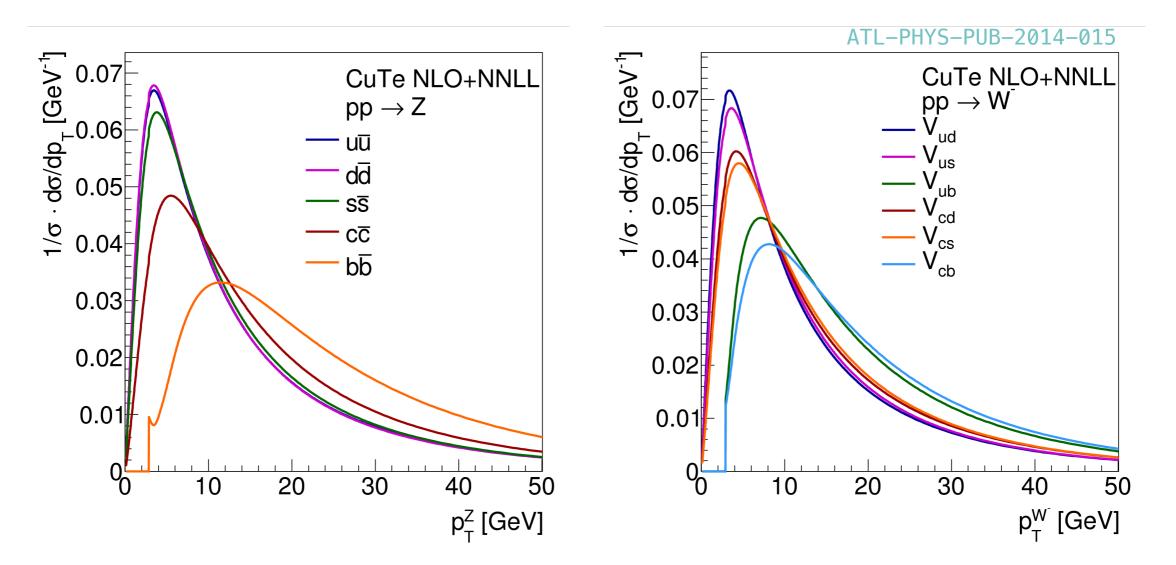

LHCb challenges:

p_T(W) model: less able to test modelling with recoil in W events. Modelling in forward direction is less charted territory — expect surprises!

Purity: no "proper" missing p_T.

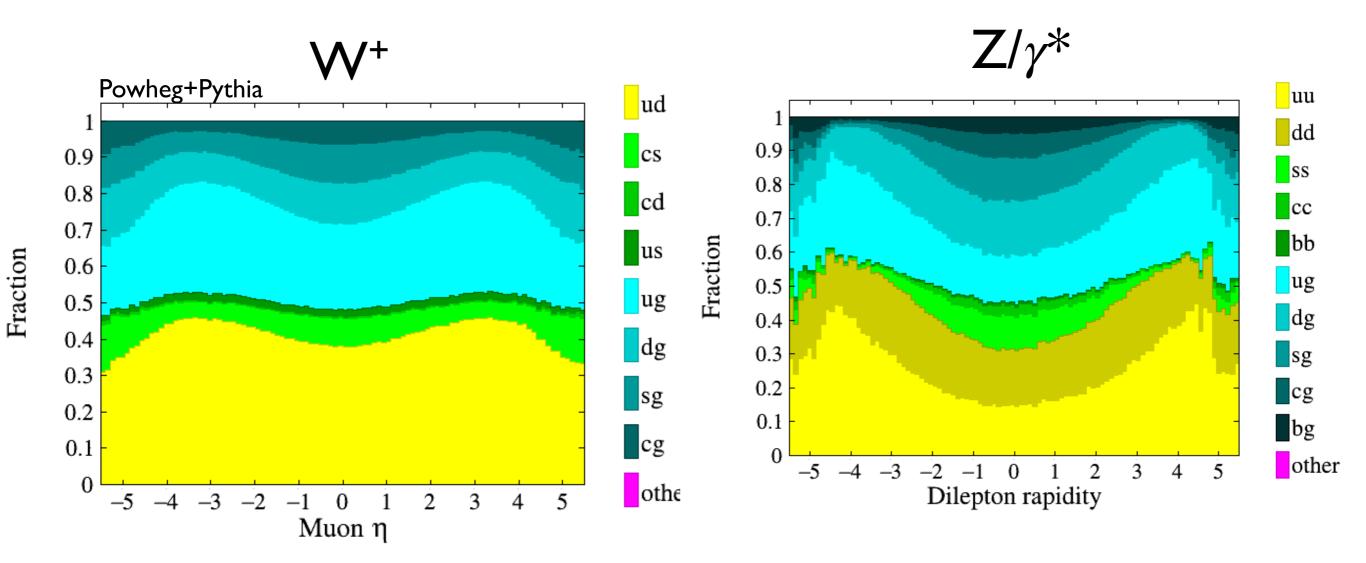
W purity and yield

Expect to have $\sim 10^7$ W decays by the end of Run-II.



We must carefully control this background.

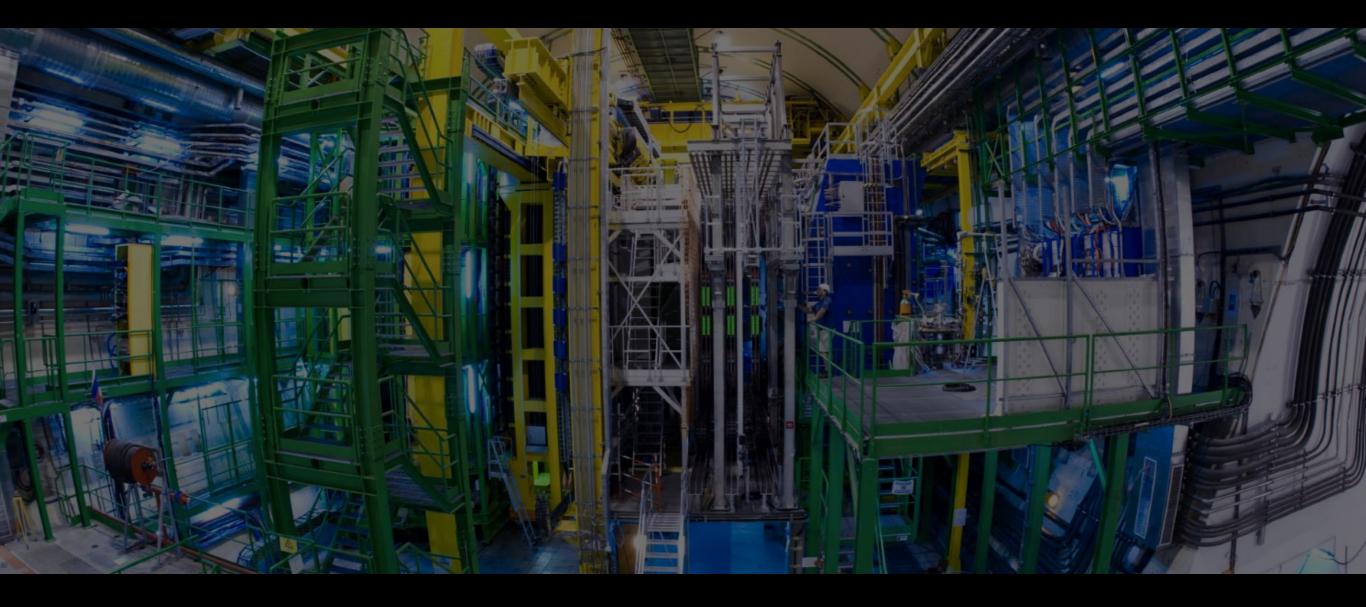
W pT model


We will have ~10⁶ $Z/\gamma^* \rightarrow \mu\mu$ decays.

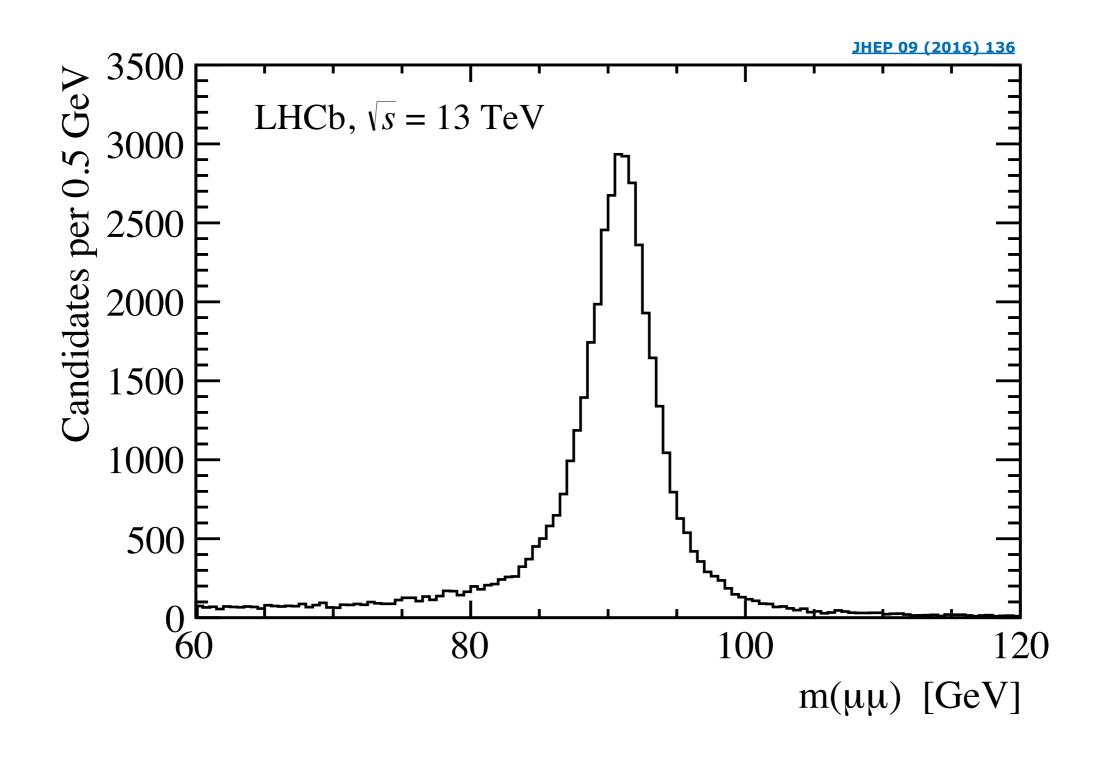
The problem is the translation Z to W. E.g. heavy quark effects

W pT model

Perhaps this is even more motivation to make a m_W measurement in a unique kinematic region.


W p_T model

Question to our theory friends: What are the most important unfolded $(Z/\gamma^* \rightarrow \mu\mu)$, or anything else) measurements that we should focus on in the short term?


We certainly plan to make measurements of angular coefficients, and (I/σ) (d³ σ /d p_T dydM) with the finest granularity that our Z data statistically allows.

Conclusion

We look forward to joining our theory, ATLAS, CMS, CDF and D0 friends in this mw effort!

Backup slides start here

