Possibility of Diffractive Bremsstrahlung Measurement at the LHC

EMMI Workshop on Photon Induced Interactions Sept. 5-8, 2017

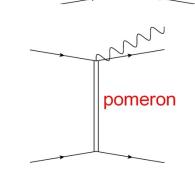
J. Chwastowski IFJ PAN, Cracow In collaboration with S.Czekierda, R. Staszewski & M.Trzebiński

Supported in part by Polish National Science Centre grant UMO-2015/18/M/ST2/00098

Bremsstrahlung

Simple three particle final state: particles at very large rapidities

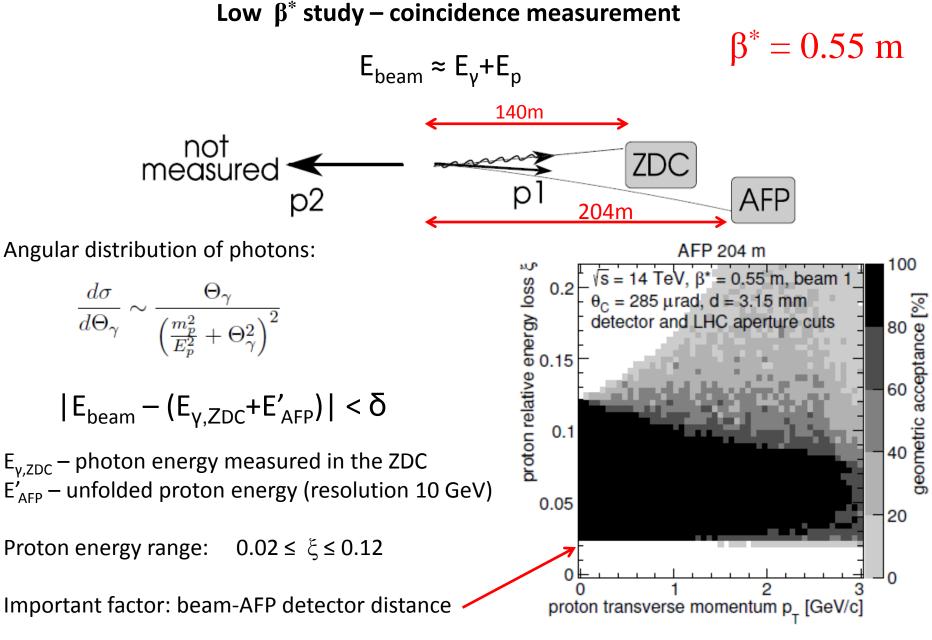
A very attractive tool for high energy experiments (lumi, beam diagnostic @ HERA)


At the 13TeV LHC EM bremsstrahlung in the UPC approximation of pp has the cross-section of about 60 nb for 100 GeV < E_v < 1500 GeV

V. A. Khoze et al. JINST 6 (2011) P01005

Measure bremsstrahlung accompanying elastic pp scattering The cross-section is of the order of microbarns

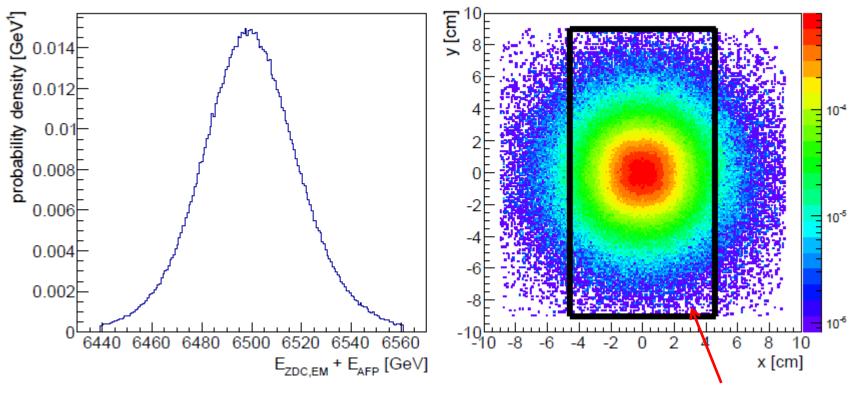
Considerably extended by P.Lebiedowicz and A. Szczurek (formfactors, re-scattering, ...) Phys. Rev. D87 (2013) 114013


Implemented into the GenEx generator, R. Kycia et al. arXiv: 1411.6035 [hep-ph]

photon

Low $\beta^*(0.55m)$ study

J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017



J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017

Low β^* - coincidence measurement

 $\sigma_{gen,signal}(100 < E_{\gamma} < 1500 \text{ GeV}) = 1.75 \mu \text{b}$

Photon position at the ZDC face

 δ set to the triple width of the ($E_{\gamma,ZDC}+E'_{AFP}$) distribution

ZDC fiducial area in TAN

δ = 78 GeV

J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017

Backgrounds

Experimentally:

$$|E_{beam} - (E_{ZDC} + E_{AFP})| < \delta + ``empty'' ATLAS detector''$$

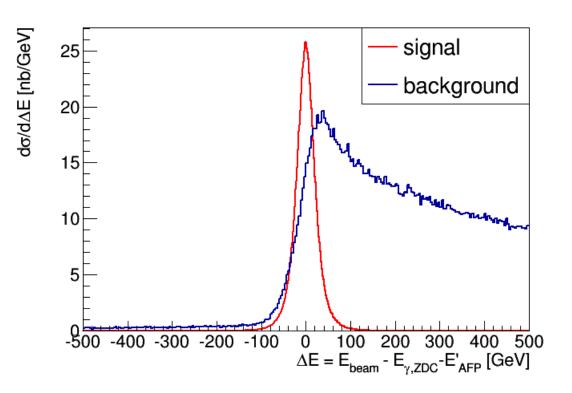
``empty" ATLAS detector:

High mass diffractive the inner tracker veto: no particle with $p_T > 1$ GeV and $|\eta| < 2.5$ the calorimeter veto: no particle with $E_{\tau} > 1$ GeV and $|\eta| < 4.8$

ZDC hadronic energy below 30 GeV (both sides) EM energy measured in the ``other side" ZDC below 30 GeV and ND processes

Mainly double diffractive processes

Events generated with PYTHIA 8


Single and double diffractive dissociation; reported cross-section: 21.4 mb Sample: 1 000 000 000 events

Dominating process is π^0 -strahlung: p+p \rightarrow p p π^0

Use the ZDC spatial resolution to reduce its influence; π^0 decay photons not closer than 5 mm at the ZDC face at the 13 TeV LHC

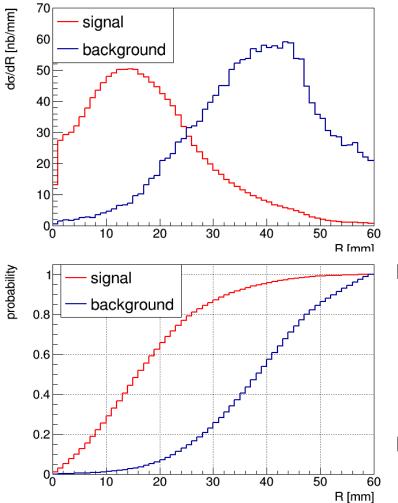
J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017

Cuts optimisation - low β^* case

Largely different shapes

Background shifted towards large values

Request:


 $|E_{beam} - (E_{\gamma,ZDC} + E'_{AFP})| < 78 \text{ GeV} - effectively rejects background results:}$

$$\sigma_{vis,signal} = 1.31 \ \mu b$$

 $\sigma_{vis,background} = 1.88 \ \mu b$ S/B ~ 2/3

J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017

Cuts optimisation - low β^* case

Photon position w.r.t. the ``beam position" at the ZDC face

Signal:

a clear maximum at about 14 mm, quickly falling tail

Background: increasing with increasing R, plateau 32 mm - 44 mm, and then rapidly decreases

Probability P(r<R):

requirement of R ≤ 30 mm retains about 85% of the signal rejects about 75% of the remaining background

Hence,

$$\sigma_{vis,signal} = 1.12 \ \mu b$$

 $\sigma_{vis,background} = 394 \ nb$ S/B ~ 3

J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017

Results of the low β^* measurement

The AFP acceptance strongly depends on the active detector – beam distance

This distance depends on the beam properties and is measured in units of the local beam width, $\sigma = 0.14$ mm for $\beta^* = 55$ cm.

Increased by 0.5 mm

- 0.3 mm the pot floor thickness,
- 0.2 mm the floor detector edge distance.

distance	σ _{vis,signal} [nb]	$\sigma_{vis,signal}$ [nb]	S/B
10σ	1047	280	3.5
15σ	915	291	3.1
20σ	745	299	2.5
25σ	614	298	2.1
30σ	497	290	1.8

J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017

High $\beta^*(90m)$ study

J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017

Large β^* - exclusive measurement

ALFA

• Aim:

use ALFA stations and the ZDCs to perform exclusive measurement

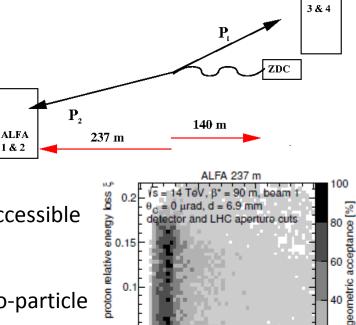
•Event signature:

photon in the ZDC,

protons registered in both arms of the ALFA system,

empty central detector

veto on the other ZDC


•Complication:

ALFA information on the registered proton energy not accessible energy conservation equation cannot be used

•A way out:

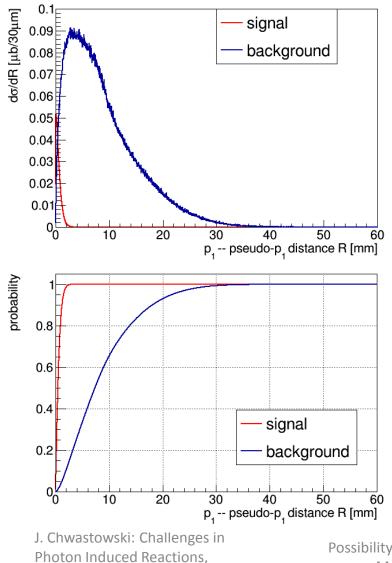
use p_{τ} conservation at the vertex and construct a pseudo-particle

- Energy of a proton in the photon hemisphere $E_{p1} = E_{beam} E_{ZDC}$ 1.
- Second proton energy $E_{p2} = E_{beam}$ 2.
- 3. Trace it back to (0,0,0) (elastic transport matrices)
- Use p_{τ} conservation to construct a pseudo+proton accompanying photon (pseudo- p_1) 4.
- Use parameterisation to transport it to the ALFA station in appropriate arm 5.
- Compare positions of p_1 and pseudo- p_1 in ALFA stations 6.

proton relative

0.

0.05


2

proton transverse momentum p_ [GeV/c]

20

Cuts optimisation for large β^{\ast} measurement

• cut on the photon position w.r.t. the ``beam position" at the ZDC face – same as for low β^* • check the p₁ and pseudo-p₁ positions

Kraków, Sept. 5-8, 2017

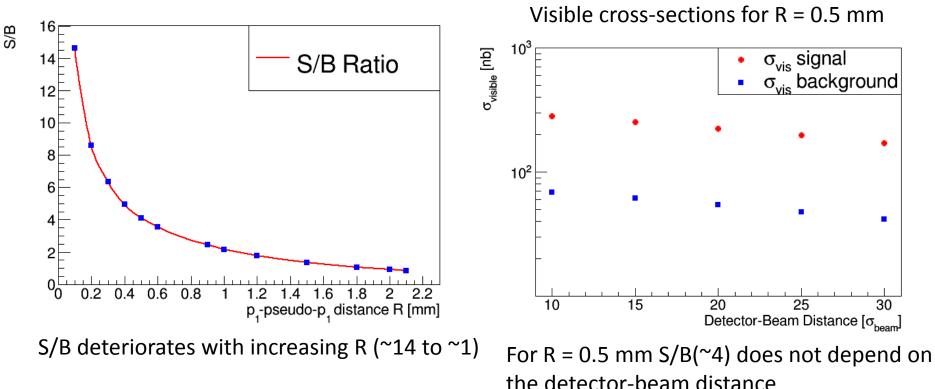
```
Signal:
almost all events within R < 2 mm,
quickly falling
```

```
Background:
initial increase,
maximum at R ~ 3-4 mm,
and then a rapid decrease
```

```
Probability P(r<R):
```

R < 2 mm retains nearly 100% of the signal while rejecting about 90% of the background

12


Results of the 90m β^* study

The ALFA acceptance depends on the active detector – beam distance

This distance depends on the beam properties and is measured in units of the local beam width, $\sigma = 0.19$ mm.

Additional 0.5 mm includes the 0.3 mm of the pot floor thickness

and 0.2 mm floor – detector edge.

J. Chwastowski: Challenges in Photon Induced Reactions, Kraków, Sept. 5-8, 2017

Results of the 90m β^* measurement

The ALFA acceptance depends on the active detector – beam distance

Its size follows from the beam properties It is measured in units of the local beam width, $\sigma = 0.19$ mm at high β^* .

Additional 0.5 mm includes:

- 0.3 mm of the pot floor thickness,
- 0.2 mm the floor detector edge distance.

distance	$\sigma_{vis,signal}$ [nb]	$\sigma_{vis,signal}$ [nb]	S/B
10σ	281	68	4.1
15σ	252	61	4.1
20σ	224	54	4.1
25σ	197	48	4.1
30σ	171	41	4.1

Summary

- Feasibility studies of the diffractive bremsstrahlung measurement at the β^* = 0.55 m and 90m LHC running at the centre of mass energy of 13 TeV were presented
- $\beta^* = 0.55$ (the AFP-ZDC case)
 - Coincidence measeuremnt
 - The signal visible cross-section ranges between 1050 nb and 500 nb depending on the detector-beam distance (10σ to 30σ)
 - The signal to background ratio decreases from 3.5 to about 2 with increasing beam-detector distance from 10σ to 30σ
- $\beta^* = 90m$ (the ALFAs-ZDC case)
 - Exclusive measurement
 - The signal visible cross-section ranges between 50 nb and 540 nb depending on the track-pseudo-track cut (0.5mm to 2 mm)
 - The S/B ratio decreases from about 14 to about 1 with increasing track-pseudo-track distance (from 0.5 mm to 2 mm)
- The measurement could be performed assuming a single interaction per bunch crossing i.e. using the data gathered in the LHC runs with very low pile-up
- The influence of the machine background is unknown and has to be studied experimentally
- Possibility to use this process to calibrate the proton relative energy loss measurement