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Motivation

The Standard Model in now complete: the last particle - Higgs

boson, predicted by the SM, has been found

No significant deviations from the SM have been observed

The masses of the top quark and of the Higgs boson, the Nature

has chosen, make the SM a self-consistent effective field theory

all the way up to the Planck scale

How to reconsile this with evidence for
new physics?
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Experimental evidence for new physics beyond the Standard Model:

Observations of neutrino oscillations (in the SM neutrinos are

massless and do not oscillate)

Evidence for Dark Matter (SM does not have particle physics

candidate for DM).

No antimatter in the Universe in amounts comparable with matter

(baryon asymmetry of the Universe is too small in the SM)

Cosmological inflation is absent in canonical variant of the SM

Accelerated expansion of the Universe (?) - though can be

“explained” by a cosmological constant.
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Theoretical evidence for new physics beyond the Standard Model:

Cosmological constant problem: Why ϵvac/M4

Pl ≪ 1?

Hierarchy problem: Why MW /MPl ≪ 1?

Stability of the Higgs mass against radiative corrections.

Strong CP-problem: Why θQCD ≪ 1?

Fermion mass matrix: Why me ≪ mt?

...

Château de Bossey, June 7 2017 – p. 4



Where is new physics?
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Only at the Planck scale?

Does not work: neutrino masses from five-dimensional operator

1

MP

Aαβ

(

L̄αφ̃
) (

φ†Lc
β

)

suppressed by the Planck scale are too small, mν < 10−5 eV.
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Below the Planck scale, but where?

Neutrino masses and oscillations: the masses of right-handed

see-saw neutrinos can vary from O(1) eV to O(1015) GeV

Dark matter, absent in the SM: the masses of DM particles can be

as small as O(10−22) eV (super-light scalar fields) or as large as

O(1020) GeV (wimpzillas, Q-balls).

Baryogenesis, absent in the SM: the masses of new particles,

responsible for baryogenesis (e.g. right-handed neutrinos), can

be as small as O(10) MeV or as large as O(1015) GeV

Higgs mass hierarchy : models related to SUSY, composite Higgs,

large extra dimensions require the presence of new physics right

above the Fermi scale, whereas the models based on scale

invariance (quantum or classical) may require the absence of new

physics between the Fermi and Planck scales
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Arguments for absence of new heavy
particles above the Fermi scale

Stability of the Higgs

mass against radiative

corrections

δm2

H ≃ αn
GUTM

2

heavy

No heavy particles - no large

contributions - no fine tuning

Higgs self coupling λ ≈ 0 at the

Planck scale (criticality of the SM

- asymptotic safety?). This is vio-

lated if new particles contribute to

the evolution of the SM couplings.
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Example of “complete” theory: the

νMSM
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Role of the Higgs boson: break the symmetry and inflate the Universe

Role of N1 with mass in keV region: dark matter.

Role of N2, N3 with mass in 100 MeV – GeV region: “give” masses to

neutrinos and produce baryon asymmetry of the Universe.
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DM: sterile neutrino N1
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HNL (N1) dark matter searches in X-rays, future after Astro-H

failure

Micro-calorimeter on sounding rocket (2017): instrument with

large field-of-view and very high spectral resolution

Large ESA X-ray mission (2028) – Athena + , X-ray

spectrometer (X-IFU) with unprecedented spectral resolution
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Baryon asymmetry: HNLs N2,3
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Constraints on U2 coming from the baryon asymmetry of the Universe,

from the see-saw formula, from the big bang nucleosynthesis and

experimental searches. Left panel - normal hierarchy, right panel -

inverted hierarchy (Canetti, Drewes, Frossard, MS). Other studies:

Drewes et al., Hernandez et al
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New physics at high scale - we may still
have new light particles

axion and ALPS

mirror or dark photon

light Higgs-like particles, dilaton

light sgoldsinos, R-parity violating neutralinos
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Models	 Final	states	

HNL,	SUSY	neutralino	
Vector,	scalar,	axion	portals,	SUSY	sgolds;no	
HNL,	SUSY	neutralino,	axino	
Axion	portal,	SUSY	sgolds;no	
SUSY	sgolds;no	

l+π�, l+K-, l+ρ� ρ+àπ+π0

l+l�
l+l-ν
γγ
π0π0 

ü HS production and decay rates are strongly suppressed relative to SM
- Production branching ratios O(10-10)
- Long-lived objects
- Interact very weakly with matter

Hidden Sector Visible Sector 
Mediators	or	portals	to	the	HS:	
vector,	scalar,	axial,	neutrino	

L	= LSM + Lmediator +LHS	

Search for Hidden Sector (HS) 
or very weakly interacting NP 
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Fixed Target Experiments @ CERN 

SPS	

LHC	

Neutrino platform,  
NA61, NA64, etc. 

Compass	

NA62	

SHiP	

Highest energy proton beam delivered for fixed target experiments in the world 

27 

Proposed implementation is based on minimal modification 
 to the current SPS complex 

The Fixed-target facility at the SPS: Prevessin North Area site 

Very intense proton beam with highest in the world energy delivered to fixed target exp. 
at CERN SPS. The aim is to deliver with 4×1013 protons / spill (at slow extraction) 

3.1. INTRODUCTION AND OPERATIONAL SCENARIO 19

by at least 5 GeV/c.
The physics sensitivity of the experiment is based on acquiring a total of 2·1020 protons

on target. The operational mode consists of continuous 24-hour data taking throughout the
operational year with the exception of maintenance during technical stops of the SPS and
limited accesses for faults.

In order to respect the maximum beam induced instantaneous particle flux in the SHiP
detectors and the limits on the power density deposition in the target, the SHiP proton spill is
transferred to TT20 using a slow resonant extraction on the third integer resonance at a time
scale of one second with a flat top of 1.2 seconds. Based on past experience, a beam intensity
of 4·1013 protons on target per spill is assumed as the baseline for the SHiP facility, and for the
design of the critical components like the target, the detectors and the general layout of the
experimental area.

Figure 3.3: The expected number of protons on the current North Area targets as a function
of the number of protons on target for the SHiP facility. The plot shows the performance for
di↵erent flat-top durations of the cycle for the current targets. The expected integrated number
of protons for exclusive operation of the North Area targets with the super-cycle planned for
2015 is indicated as a dot.

The minimum cycle length which is compatible with the parameters above is 7.2 s (Ap-
pendix A:A2). The flat-top duration of the cycles dedicated to fixed target physics with the
current North Area targets must be of the order of 9 s to profit from the maximum number
of protons that can be accelerated per cycle in the SPS to 400 GeV, and be compatible with
the maximum event rate acceptable at present by the North Area experiments and with the
thermo-mechanical stress on the splitter magnets. Taking this into account, realistic configu-
rations of the SPS super-cycle have been elaborated using the operational e�ciency and the
injector schedule from 2011 and 2012 for the operation of the North Area, CNGS and LHC, and
Machine Developments (MD). It has been assumed that 10% of the SPS scheduled physics time

Sharing	of	pot	between	current	
fixed	target	exp.	and	planned	Beam	

Dump	Facility	(BDF)	
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DM production at LCLS-II Beam Dump

New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter

Eder Izaguirre, Gordan Krnjaic, Philip Schuster, and Natalia Toro
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

(Dated: November 19, 2013)

In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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of MeV � GeV dark matter are those whose interactions
with ordinary matter are mediated by new GeV-scale
“dark” force carriers (for example, a gauge boson that
kinetically mixes with the photon) [41, 59]. Such models
readily account for the stability of dark matter and its
observed relic density, are compatible with observations,
and have important implications beyond the dark matter
itself. In these scenarios, high energy accelerator probes
of sub-GeV dark matter are as ine↵ective as direct detec-
tion searches, because the missing energy in dark matter
pair production is peaked well below the Z ! ⌫⌫̄ back-
ground and is invisible over QCD backgrounds[60, 61].

Instead, the tightest constraints on light dark matter
arise from B-factory searches in (partly) invisible decay
modes [62], rare kaon decays [63], precision (g � 2) mea-
surements of the electron and muon [64, 65], neutrino ex-
periments [16], supernova cooling, and high-background
analyses of electron recoils in direct detection [56]. These
constraints and those from future B-factories and neu-
trino experiments leave a broad and well-motivated class
of sub-GeV dark matter models largely unexplored. For
example, with a dark matter mass ⇠> 70 MeV, existing
neutrino factories and optimistic projections for future
Belle II sensitivity leave a swath of parameter space rel-
evant for reconciling the (g � 2)

µ

anomaly wide open
(see Figure 3). More broadly, the interaction strength
best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged par-
ticles. This includes a swath of light force carrier pa-
rameters motivated by the (g � 2)

µ

anomaly, extending
beyond the reach of proposed neutrino-factory searches
and Belle II projections (see Figure 3). The setup re-
quires a small 1 m3-scale (or smaller) detector volume
tens of meters downstream of the beam dump for a high-
intensity multi-GeV electron beam (for example, behind
the Je↵erson Lab Hall A or C dumps or a linear collider
beam dump), and could run parasitically at existing facil-
ities (see [66] for a proof-of-concept example). All of the
above-mentioned light particles (referred to hereafter as
“�”) can be pair-produced radiatively in electron-nucleus
collisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[68] will produce 100µA beams at 12 GeV. Even a sim-
ple meter-scale (or smaller) instrument capable of de-
tecting quasi-elastic nucleon scattering, but without cos-
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important implications beyond the dark matter itself. In
these scenarios, high energy accelerator probes of sub-
GeV dark matter are as ine↵ective as direct detection
searches, because the missing energy in dark matter pair
production is peaked well below the Z ! ⌫⌫̄ background
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These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
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Fig. 3), including GeV-scale dark matter, any component
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II projections (see Figure 3). The setup requires a small
1 m3-scale detector volume tens of meters downstream
of the beam dump for a high-intensity multi-GeV elec-
tron beam (for example, behind the Je↵erson Lab Hall A
or C dumps or a linear collider beam dump), and could
run parasitically at existing facilities. All of the above-
mentioned light particles (referred to hereafter as “�”)
can be pair-produced radiatively in electron-nucleus col-
lisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[53] will produce 100µA beams at 12 GeV. Even a simple
meter-scale instrument capable of detecting quasi-elastic
nucleon scattering, but without cosmic background re-
jection, positioned roughly 20 meters downstream of the
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic

FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

mic background rejection, positioned roughly 20 meters
(or less) downstream of the Hall A dump has interesting
physics sensitivity (upper, dotted red curves in Fig. 3).
Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
or more simply by using a pulsed beam. The lower red
curve corresponds to 40-event sensitivity per 1022 elec-
trons on target, which may be realistically achievable
in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
configurations, with 1000 and 2 · 104 signal-event sensi-
tivity, respectively, per 1022 electrons on target. Though
not considered in detail in this paper, detectors sensitive
to �-electron elastic scattering, coherent �-nuclear scat-
tering, and pion production in inelastic �-nucleon scat-
tering could have additional sensitivity. With a pulsed
beam, comparable parameter space could be equally well
probed with 1 to 3 orders of magnitude less intensity.
A high-intensity pulsed beam such as the proposed ILC
beam could reach even greater sensitivity (orange curve).
The parameter spaces of these plots are explained in the
forthcoming subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [62], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [69]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for

2

of MeV � GeV dark matter are those whose interactions
with ordinary matter are mediated by new GeV-scale
“dark” force carriers (for example, a gauge boson that
kinetically mixes with the photon) [41, 59]. Such models
readily account for the stability of dark matter and its
observed relic density, are compatible with observations,
and have important implications beyond the dark matter
itself. In these scenarios, high energy accelerator probes
of sub-GeV dark matter are as ine↵ective as direct detec-
tion searches, because the missing energy in dark matter
pair production is peaked well below the Z ! ⌫⌫̄ back-
ground and is invisible over QCD backgrounds[60, 61].

Instead, the tightest constraints on light dark matter
arise from B-factory searches in (partly) invisible decay
modes [62], rare kaon decays [63], precision (g � 2) mea-
surements of the electron and muon [64, 65], neutrino ex-
periments [16], supernova cooling, and high-background
analyses of electron recoils in direct detection [56]. These
constraints and those from future B-factories and neu-
trino experiments leave a broad and well-motivated class
of sub-GeV dark matter models largely unexplored. For
example, with a dark matter mass ⇠> 70 MeV, existing
neutrino factories and optimistic projections for future
Belle II sensitivity leave a swath of parameter space rel-
evant for reconciling the (g � 2)

µ

anomaly wide open
(see Figure 3). More broadly, the interaction strength
best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged par-
ticles. This includes a swath of light force carrier pa-
rameters motivated by the (g � 2)

µ

anomaly, extending
beyond the reach of proposed neutrino-factory searches
and Belle II projections (see Figure 3). The setup re-
quires a small 1 m3-scale (or smaller) detector volume
tens of meters downstream of the beam dump for a high-
intensity multi-GeV electron beam (for example, behind
the Je↵erson Lab Hall A or C dumps or a linear collider
beam dump), and could run parasitically at existing facil-
ities (see [66] for a proof-of-concept example). All of the
above-mentioned light particles (referred to hereafter as
“�”) can be pair-produced radiatively in electron-nucleus
collisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[68] will produce 100µA beams at 12 GeV. Even a sim-
ple meter-scale (or smaller) instrument capable of de-
tecting quasi-elastic nucleon scattering, but without cos-
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MeV � GeV dark matter are those whose interactions
with ordinary matter are mediated by new GeV-scale
“dark” force carriers (for example, a gauge boson that
kinetically mixes with the photon). Such models readily
account for the stability of dark matter and its observed
relic density, are compatible with observations, and have
important implications beyond the dark matter itself. In
these scenarios, high energy accelerator probes of sub-
GeV dark matter are as ine↵ective as direct detection
searches, because the missing energy in dark matter pair
production is peaked well below the Z ! ⌫⌫̄ background
and is invisible over QCD backgrounds[? ? ].

Instead, the tightest constraints on light dark matter
arise from B-factory searches in (partly) invisible decay
modes [? ], rare kaon decays [? ], precision (g � 2) mea-
surements of the electron and muon [? ], neutrino ex-
periments [? ], supernova cooling, and high-background
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example, with a dark matter mass ⇠> 70 MeV, existing
neutrino factories and optimisitic projections for future
Belle II sensitivity leave a swath of parameter space rel-
evant for reconciling the (g � 2)

µ

anomaly wide open
(see Figure 3). More broadly, the interaction strength
best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged parti-
cles. This includes a swath of light force carrier parame-
ters motivated by the (g�2)
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anomaly, extending beyond
the reach of proposed neutrino-factory searches and Belle
II projections (see Figure 3). The setup requires a small
1 m3-scale detector volume tens of meters downstream
of the beam dump for a high-intensity multi-GeV elec-
tron beam (for example, behind the Je↵erson Lab Hall A
or C dumps or a linear collider beam dump), and could
run parasitically at existing facilities. All of the above-
mentioned light particles (referred to hereafter as “�”)
can be pair-produced radiatively in electron-nucleus col-
lisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[53] will produce 100µA beams at 12 GeV. Even a simple
meter-scale instrument capable of detecting quasi-elastic
nucleon scattering, but without cosmic background re-
jection, positioned roughly 20 meters downstream of the
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic

FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

mic background rejection, positioned roughly 20 meters
(or less) downstream of the Hall A dump has interesting
physics sensitivity (upper, dotted red curves in Fig. 3).
Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
or more simply by using a pulsed beam. The lower red
curve corresponds to 40-event sensitivity per 1022 elec-
trons on target, which may be realistically achievable
in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
configurations, with 1000 and 2 · 104 signal-event sensi-
tivity, respectively, per 1022 electrons on target. Though
not considered in detail in this paper, detectors sensitive
to �-electron elastic scattering, coherent �-nuclear scat-
tering, and pion production in inelastic �-nucleon scat-
tering could have additional sensitivity. With a pulsed
beam, comparable parameter space could be equally well
probed with 1 to 3 orders of magnitude less intensity.
A high-intensity pulsed beam such as the proposed ILC
beam could reach even greater sensitivity (orange curve).
The parameter spaces of these plots are explained in the
forthcoming subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [62], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [69]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
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New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter
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In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter

Eder Izaguirre, Gordan Krnjaic, Philip Schuster, and Natalia Toro
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

(Dated: November 19, 2013)

In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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of MeV � GeV dark matter are those whose interactions
with ordinary matter are mediated by new GeV-scale
“dark” force carriers (for example, a gauge boson that
kinetically mixes with the photon) [41, 59]. Such models
readily account for the stability of dark matter and its
observed relic density, are compatible with observations,
and have important implications beyond the dark matter
itself. In these scenarios, high energy accelerator probes
of sub-GeV dark matter are as ine↵ective as direct detec-
tion searches, because the missing energy in dark matter
pair production is peaked well below the Z ! ⌫⌫̄ back-
ground and is invisible over QCD backgrounds[60, 61].

Instead, the tightest constraints on light dark matter
arise from B-factory searches in (partly) invisible decay
modes [62], rare kaon decays [63], precision (g � 2) mea-
surements of the electron and muon [64, 65], neutrino ex-
periments [16], supernova cooling, and high-background
analyses of electron recoils in direct detection [56]. These
constraints and those from future B-factories and neu-
trino experiments leave a broad and well-motivated class
of sub-GeV dark matter models largely unexplored. For
example, with a dark matter mass ⇠> 70 MeV, existing
neutrino factories and optimistic projections for future
Belle II sensitivity leave a swath of parameter space rel-
evant for reconciling the (g � 2)

µ

anomaly wide open
(see Figure 3). More broadly, the interaction strength
best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged par-
ticles. This includes a swath of light force carrier pa-
rameters motivated by the (g � 2)

µ

anomaly, extending
beyond the reach of proposed neutrino-factory searches
and Belle II projections (see Figure 3). The setup re-
quires a small 1 m3-scale (or smaller) detector volume
tens of meters downstream of the beam dump for a high-
intensity multi-GeV electron beam (for example, behind
the Je↵erson Lab Hall A or C dumps or a linear collider
beam dump), and could run parasitically at existing facil-
ities (see [66] for a proof-of-concept example). All of the
above-mentioned light particles (referred to hereafter as
“�”) can be pair-produced radiatively in electron-nucleus
collisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[68] will produce 100µA beams at 12 GeV. Even a sim-
ple meter-scale (or smaller) instrument capable of de-
tecting quasi-elastic nucleon scattering, but without cos-
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kinetically mixes with the photon). Such models readily
account for the stability of dark matter and its observed
relic density, are compatible with observations, and have
important implications beyond the dark matter itself. In
these scenarios, high energy accelerator probes of sub-
GeV dark matter are as ine↵ective as direct detection
searches, because the missing energy in dark matter pair
production is peaked well below the Z ! ⌫⌫̄ background
and is invisible over QCD backgrounds[? ? ].

Instead, the tightest constraints on light dark matter
arise from B-factory searches in (partly) invisible decay
modes [? ], rare kaon decays [? ], precision (g � 2) mea-
surements of the electron and muon [? ], neutrino ex-
periments [? ], supernova cooling, and high-background
analyses of electron recoils in direct detection [? ]. These
constraints and those from future B-factories and neu-
trino experiments leave a broad and well-motivated class
of sub-GeV dark matter models largely unexplored. For
example, with a dark matter mass ⇠> 70 MeV, existing
neutrino factories and optimisitic projections for future
Belle II sensitivity leave a swath of parameter space rel-
evant for reconciling the (g � 2)

µ

anomaly wide open
(see Figure 3). More broadly, the interaction strength
best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged parti-
cles. This includes a swath of light force carrier parame-
ters motivated by the (g�2)

µ

anomaly, extending beyond
the reach of proposed neutrino-factory searches and Belle
II projections (see Figure 3). The setup requires a small
1 m3-scale detector volume tens of meters downstream
of the beam dump for a high-intensity multi-GeV elec-
tron beam (for example, behind the Je↵erson Lab Hall A
or C dumps or a linear collider beam dump), and could
run parasitically at existing facilities. All of the above-
mentioned light particles (referred to hereafter as “�”)
can be pair-produced radiatively in electron-nucleus col-
lisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[53] will produce 100µA beams at 12 GeV. Even a simple
meter-scale instrument capable of detecting quasi-elastic
nucleon scattering, but without cosmic background re-
jection, positioned roughly 20 meters downstream of the
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic

FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

mic background rejection, positioned roughly 20 meters
(or less) downstream of the Hall A dump has interesting
physics sensitivity (upper, dotted red curves in Fig. 3).
Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
or more simply by using a pulsed beam. The lower red
curve corresponds to 40-event sensitivity per 1022 elec-
trons on target, which may be realistically achievable
in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
configurations, with 1000 and 2 · 104 signal-event sensi-
tivity, respectively, per 1022 electrons on target. Though
not considered in detail in this paper, detectors sensitive
to �-electron elastic scattering, coherent �-nuclear scat-
tering, and pion production in inelastic �-nucleon scat-
tering could have additional sensitivity. With a pulsed
beam, comparable parameter space could be equally well
probed with 1 to 3 orders of magnitude less intensity.
A high-intensity pulsed beam such as the proposed ILC
beam could reach even greater sensitivity (orange curve).
The parameter spaces of these plots are explained in the
forthcoming subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [62], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [69]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
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surements of the electron and muon [64, 65], neutrino ex-
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mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component
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ticles. This includes a swath of light force carrier pa-
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anomaly, extending
beyond the reach of proposed neutrino-factory searches
and Belle II projections (see Figure 3). The setup re-
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intensity multi-GeV electron beam (for example, behind
the Je↵erson Lab Hall A or C dumps or a linear collider
beam dump), and could run parasitically at existing facil-
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above-mentioned light particles (referred to hereafter as
“�”) can be pair-produced radiatively in electron-nucleus
collisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[68] will produce 100µA beams at 12 GeV. Even a sim-
ple meter-scale (or smaller) instrument capable of de-
tecting quasi-elastic nucleon scattering, but without cos-
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beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged parti-
cles. This includes a swath of light force carrier parame-
ters motivated by the (g�2)
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the reach of proposed neutrino-factory searches and Belle
II projections (see Figure 3). The setup requires a small
1 m3-scale detector volume tens of meters downstream
of the beam dump for a high-intensity multi-GeV elec-
tron beam (for example, behind the Je↵erson Lab Hall A
or C dumps or a linear collider beam dump), and could
run parasitically at existing facilities. All of the above-
mentioned light particles (referred to hereafter as “�”)
can be pair-produced radiatively in electron-nucleus col-
lisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[53] will produce 100µA beams at 12 GeV. Even a simple
meter-scale instrument capable of detecting quasi-elastic
nucleon scattering, but without cosmic background re-
jection, positioned roughly 20 meters downstream of the
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic

FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
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typical reaction is quasi-elastic and nucleons will be ejected.

mic background rejection, positioned roughly 20 meters
(or less) downstream of the Hall A dump has interesting
physics sensitivity (upper, dotted red curves in Fig. 3).
Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
or more simply by using a pulsed beam. The lower red
curve corresponds to 40-event sensitivity per 1022 elec-
trons on target, which may be realistically achievable
in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
configurations, with 1000 and 2 · 104 signal-event sensi-
tivity, respectively, per 1022 electrons on target. Though
not considered in detail in this paper, detectors sensitive
to �-electron elastic scattering, coherent �-nuclear scat-
tering, and pion production in inelastic �-nucleon scat-
tering could have additional sensitivity. With a pulsed
beam, comparable parameter space could be equally well
probed with 1 to 3 orders of magnitude less intensity.
A high-intensity pulsed beam such as the proposed ILC
beam could reach even greater sensitivity (orange curve).
The parameter spaces of these plots are explained in the
forthcoming subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [62], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [69]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
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In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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of MeV � GeV dark matter are those whose interactions
with ordinary matter are mediated by new GeV-scale
“dark” force carriers (for example, a gauge boson that
kinetically mixes with the photon) [41, 59]. Such models
readily account for the stability of dark matter and its
observed relic density, are compatible with observations,
and have important implications beyond the dark matter
itself. In these scenarios, high energy accelerator probes
of sub-GeV dark matter are as ine↵ective as direct detec-
tion searches, because the missing energy in dark matter
pair production is peaked well below the Z ! ⌫⌫̄ back-
ground and is invisible over QCD backgrounds[60, 61].

Instead, the tightest constraints on light dark matter
arise from B-factory searches in (partly) invisible decay
modes [62], rare kaon decays [63], precision (g � 2) mea-
surements of the electron and muon [64, 65], neutrino ex-
periments [16], supernova cooling, and high-background
analyses of electron recoils in direct detection [56]. These
constraints and those from future B-factories and neu-
trino experiments leave a broad and well-motivated class
of sub-GeV dark matter models largely unexplored. For
example, with a dark matter mass ⇠> 70 MeV, existing
neutrino factories and optimistic projections for future
Belle II sensitivity leave a swath of parameter space rel-
evant for reconciling the (g � 2)

µ

anomaly wide open
(see Figure 3). More broadly, the interaction strength
best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged par-
ticles. This includes a swath of light force carrier pa-
rameters motivated by the (g � 2)

µ

anomaly, extending
beyond the reach of proposed neutrino-factory searches
and Belle II projections (see Figure 3). The setup re-
quires a small 1 m3-scale (or smaller) detector volume
tens of meters downstream of the beam dump for a high-
intensity multi-GeV electron beam (for example, behind
the Je↵erson Lab Hall A or C dumps or a linear collider
beam dump), and could run parasitically at existing facil-
ities (see [66] for a proof-of-concept example). All of the
above-mentioned light particles (referred to hereafter as
“�”) can be pair-produced radiatively in electron-nucleus
collisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[68] will produce 100µA beams at 12 GeV. Even a sim-
ple meter-scale (or smaller) instrument capable of de-
tecting quasi-elastic nucleon scattering, but without cos-
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important implications beyond the dark matter itself. In
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best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged parti-
cles. This includes a swath of light force carrier parame-
ters motivated by the (g�2)
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anomaly, extending beyond
the reach of proposed neutrino-factory searches and Belle
II projections (see Figure 3). The setup requires a small
1 m3-scale detector volume tens of meters downstream
of the beam dump for a high-intensity multi-GeV elec-
tron beam (for example, behind the Je↵erson Lab Hall A
or C dumps or a linear collider beam dump), and could
run parasitically at existing facilities. All of the above-
mentioned light particles (referred to hereafter as “�”)
can be pair-produced radiatively in electron-nucleus col-
lisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[53] will produce 100µA beams at 12 GeV. Even a simple
meter-scale instrument capable of detecting quasi-elastic
nucleon scattering, but without cosmic background re-
jection, positioned roughly 20 meters downstream of the
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic

FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

mic background rejection, positioned roughly 20 meters
(or less) downstream of the Hall A dump has interesting
physics sensitivity (upper, dotted red curves in Fig. 3).
Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
or more simply by using a pulsed beam. The lower red
curve corresponds to 40-event sensitivity per 1022 elec-
trons on target, which may be realistically achievable
in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
configurations, with 1000 and 2 · 104 signal-event sensi-
tivity, respectively, per 1022 electrons on target. Though
not considered in detail in this paper, detectors sensitive
to �-electron elastic scattering, coherent �-nuclear scat-
tering, and pion production in inelastic �-nucleon scat-
tering could have additional sensitivity. With a pulsed
beam, comparable parameter space could be equally well
probed with 1 to 3 orders of magnitude less intensity.
A high-intensity pulsed beam such as the proposed ILC
beam could reach even greater sensitivity (orange curve).
The parameter spaces of these plots are explained in the
forthcoming subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [62], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [69]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
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kinetically mixes with the photon) [41, 59]. Such models
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observed relic density, are compatible with observations,
and have important implications beyond the dark matter
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best motivated in the context of models with kinetically
mixed force carriers (mixing 10�5 . ✏ . 10�3) lies just
beyond current sensitivity across a wide range of dark
matter and force carrier masses in the MeV�GeV range.
These considerations, along with the goal of greatly ex-
tending sensitivity to any components of MeV�GeV dark
matter beyond direct detection constraints motivates a
much more aggressive program of searches in the coming
decade.

The experimental setup we consider can dramatically
extend sensitivity to long-lived weakly coupled states (see
Fig. 3), including GeV-scale dark matter, any component

of dark matter below a few GeV, and milli-charged par-
ticles. This includes a swath of light force carrier pa-
rameters motivated by the (g � 2)
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anomaly, extending
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and Belle II projections (see Figure 3). The setup re-
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intensity multi-GeV electron beam (for example, behind
the Je↵erson Lab Hall A or C dumps or a linear collider
beam dump), and could run parasitically at existing facil-
ities (see [66] for a proof-of-concept example). All of the
above-mentioned light particles (referred to hereafter as
“�”) can be pair-produced radiatively in electron-nucleus
collisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
[68] will produce 100µA beams at 12 GeV. Even a sim-
ple meter-scale (or smaller) instrument capable of de-
tecting quasi-elastic nucleon scattering, but without cos-
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important implications beyond the dark matter itself. In
these scenarios, high energy accelerator probes of sub-
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matter beyond direct detection constraints motivates a
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of the beam dump for a high-intensity multi-GeV elec-
tron beam (for example, behind the Je↵erson Lab Hall A
or C dumps or a linear collider beam dump), and could
run parasitically at existing facilities. All of the above-
mentioned light particles (referred to hereafter as “�”)
can be pair-produced radiatively in electron-nucleus col-
lisions in the dump (see Fig. 2a). A fraction of these
relativistic particles then scatter o↵ nucleons, nuclei, or
electrons in the detector volume (see Fig. 2b).

Within a year, Je↵erson Laboratory’s CEBAF (JLab)
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meter-scale instrument capable of detecting quasi-elastic
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

Hall A dump has interesting physics sensitivity (upper,
dotted red curves in Fig. 3). Dramatic further gains
can be obtained by shielding from or vetoing cosmogenic
neutrons (lower two red curves), or more simply by us-
ing a pulsed beam. The lower red curve corresponds to
40-event sensitivity per 1022 electrons on target, which
may be realistically achievable in under a beam-year at
JLab. The middle and upper red curves correspond
to background-systematics-limited configurations, with
1000 and 2 · 104 signal-event sensitivity, respectively, per
1022 electrons on target. Though not considered in de-
tail in this paper, detectors sensitive to �-electron elas-
tic scattering, coherent �-nuclear scattering, and pion
production in inelastic �-nucleon scattering could have
additional sensitivity. With a pulsed beam, comparable
parameter space could be equally well probed with 1 to
3 orders of magnitude less intensity. A high-intensity
pulsed beam such as the proposed ILC beam could reach
even greater sensitivity (orange curve). The parameter
spaces of these plots are explained in the forthcoming
subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [50], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [54]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
electron beams. MeV-to-GeV � are also produced with
very forward-peaked kinematics (enhanced at high beam
energy), permitting large angular acceptance even for a
small detector. Furthermore, the expected cosmogenic
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est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.
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(or less) downstream of the Hall A dump has interesting
physics sensitivity (upper, dotted red curves in Fig. 3).
Dramatic further gains can be obtained by shielding from
or vetoing cosmogenic neutrons (lower two red curves),
or more simply by using a pulsed beam. The lower red
curve corresponds to 40-event sensitivity per 1022 elec-
trons on target, which may be realistically achievable
in under a beam-year at JLab. The middle and upper
red curves correspond to background-systematics-limited
configurations, with 1000 and 2 · 104 signal-event sensi-
tivity, respectively, per 1022 electrons on target. Though
not considered in detail in this paper, detectors sensitive
to �-electron elastic scattering, coherent �-nuclear scat-
tering, and pion production in inelastic �-nucleon scat-
tering could have additional sensitivity. With a pulsed
beam, comparable parameter space could be equally well
probed with 1 to 3 orders of magnitude less intensity.
A high-intensity pulsed beam such as the proposed ILC
beam could reach even greater sensitivity (orange curve).
The parameter spaces of these plots are explained in the
forthcoming subsection.

The beam dump approach outlined here is quite com-
plementary to B-factory � + invisible searches [62], with
better sensitivity in the MeV � GeV range and less sen-
sitivity for 1 � 10 GeV (see also [69]). Compared to
similar search strategies using proton beam dumps, the
setup we consider has several virtues. Most significantly,
beam-related neutrino backgrounds, which are the lim-
iting factor for proton beam setups, are negligible for
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In a broad class of consistent models, MeV to few-GeV dark matter interacts with ordinary matter
through weakly coupled GeV-scale mediators. We show that a suitable meter-scale (or smaller) de-
tector situated downstream of an electron beam-dump can sensitively probe dark matter interacting
via sub-GeV mediators, while B-factory searches cover the 1–5 GeV range. Combined, such exper-
iments explore a well-motivated and otherwise inaccessible region of dark matter parameter space
with sensitivity several orders of magnitude beyond existing direct detection constraints. These ex-
periments would also probe invisibly decaying new gauge bosons (“dark photons”) down to kinetic
mixing of ✏ ⇠ 10�4, including the range of parameters relevant for explaining the (g � 2)

µ

discrep-
ancy. Sensitivity to other long-lived dark sector states and to new milli-charge particles would also
be improved.

I. INTRODUCTION AND SUMMARY

Dark matter is sharp evidence for physics beyond the
Standard Model, and may be our first glimpse at a
rich sector of new phenomena at accessible mass scales.
Whereas vast experimental programs aim to detect or
produce few-GeV-to-TeV dark matter [1–12], these ex-
periments are essentially blind to dark matter of MeV-
to-GeV mass. We propose an approach to search for
dark matter in this lower mass range by producing it in
an electron beam-dump and then detecting its scatter-
ing in a small downstream detector (Fig. 1). This ap-
proach can explore significant new parameter space for
both dark matter and light force-carriers decaying invisi-
bly, in parasitic low-beam-background experiments at ex-
isting facilities. The sensitivity of this approach comple-
ments and extends that of analogous proposed neutrino
factory searches [13–16]. Combined with potential B-
factory searches, these experiments would explore a well-
motivated and otherwise inaccessible region of dark mat-
ter parameter space. Experiments of this type are also es-
sential to a robust program searching for new kinetically
mixed gauge bosons, as they complement the ongoing
searches for such bosons’ visible decays [13, 14, 17–37].

Various considerations motivate dark matter candi-
dates in the MeV-to-TeV range. Much heavier dark mat-
ter is disfavored because its naive thermal abundance ex-
ceeds the observed cosmological matter density. Much
beneath an MeV, astrophysical and cosmological con-
straints allow only dark matter with ultra-weak couplings
to quarks and leptons [38]. Between these boundaries
(MeV � TeV), simple models of dark matter can ac-
count for its observed abundance through either thermal
freeze-out or non-thermal mechanisms [39–54]. The con-
ventional argument in favor of weak-scale (& 100 GeV)
dark matter — that its annihilation through Standard
Model (SM) forces alone su�ces to explain the observed
relic density — is dampened by strong experimental con-
straints on dark matter with significant couplings to the
Z or Higgs bosons [12, 55] and by the absence to date of
evidence for new SM-charged matter at the LHC.

The best constraints on multi-GeV dark matter inter-
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FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, slow
neutrons, and noise. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce cosmogenic and
other environmental backgrounds.
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FIG. 2: a) ��̄ pair production in electron-nucleus collisions
via the Cabibbo-Parisi radiative process (with A0 on- or o↵-
shell) and b) � scattering o↵ a detector nucleus and liberating
a constituent nucleon. For the momentum transfers of inter-
est, the incoming � resolves the nuclear substructure, so the
typical reaction is quasi-elastic and nucleons will be ejected.

FIG. 1: Schematic experimental setup. A high-intensity
multi-GeV electron beam impinging on a beam dump pro-
duces a secondary beam of dark sector states. In the basic
setup, a small detector is placed downstream so that muons
and energetic neutrons are entirely ranged out. In the con-
crete example we consider, a scintillator detector is used to
study quasi-elastic �-nucleon scattering at momentum trans-
fers ⇠> 140 MeV, well above radiological backgrounds, fast
neutrons, and noise. Similar layouts with much smaller detec-
tors or shorter target-detector distances than shown above are
similarly sensitive. To improve sensitivity, additional shield-
ing or vetoes can be used to actively reduce high energy cos-
mogenic and other environmental backgrounds.

actions are from underground searches for nuclei recoiling
o↵ non-relativistic dark matter particles in the Galactic
halo (e.g. [1, 2, 5–9, 12]). These searches are insensi-
tive to few-GeV or lighter dark matter, whose nuclear
scattering transfers invisibly small kinetic energy to a re-
coiling nucleus. Electron-scattering o↵ers an alternative
strategy to search for sub-GeV dark matter, but with
dramatically higher backgrounds [56–58]. If dark matter
scatters by exchange of particles heavier than the Z, then
competitive limits can be obtained from hadron collider
searches for dark matter pair-production accompanied by
a jet, which results in a high-missing-energy “monojet”
signature [9, 10]. But among the best motivated models
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The SHiP experiment at SPS 
( to search for HS particles with O(10 GeV) masses) 

>1018 D,  >1016 τ,  >1020 γ
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ü  Search for HS particles in Heavy Flavour decays 
          Charm (and beauty) cross-sections strongly 
          depend on the beam energy  

ü HS produced in charm and beauty decays have
significant PT

 Detector must be placed close to the target to maximize geometrical 
acceptance. Effective (and “short”) muon shield is the key element 

 to reduce muon-induced backgrounds 

Opening angle of the 
 decay products in Nàµπ 

General experimental requirements 
to search for HS at beam dump experiment 

SHiP = Search for Hidden Particles

� Goal: comprehensive investigation of ”dark sector” particles in the few GeV energy range: 
scalar (e.g. Higgs singlets), fermions (e.g. heavy neutral leptons), vectors (e.g. dark photons).

Present in several BSM scenarios addressing DM, neutrino masses, baryogenesis problems
� Beam dump facility: 400 GeV protons from SPS on target Æ ~2x1020 POT in 5 years
� Produced e.g. in D decays; detected via decays into lepton, photon, hadron, hadron-lepton pairs

� Long (50 m) evacuated decay vessel
� Most crucial experimental issue is to reject huge backgrounds Æ heavy target, hadron absorber, 

active muon shield, veto and time detectors, particle ID, etc. 

ℒ= ℒSM + ℒPORTAL + ℒDS

SHiP = Search for Hidden Particles

� Goal: comprehensive investigation of ”dark sector” particles in the few GeV energy range: 
scalar (e.g. Higgs singlets), fermions (e.g. heavy neutral leptons), vectors (e.g. dark photons).

Present in several BSM scenarios addressing DM, neutrino masses, baryogenesis problems
� Beam dump facility: 400 GeV protons from SPS on target Æ ~2x1020 POT in 5 years
� Produced e.g. in D decays; detected via decays into lepton, photon, hadron, hadron-lepton pairs

� Long (50 m) evacuated decay vessel
� Most crucial experimental issue is to reject huge backgrounds Æ heavy target, hadron absorber, 

active muon shield, veto and time detectors, particle ID, etc. 

ℒ= ℒSM + ℒPORTAL + ℒDS
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Brief history and current status of SHiP 

ü Letter Of Intent  - October 2013
ü Technical Proposal & Physics Paper - April 2015
ü Reviewed by the SPSC and CERN RB by March 2016, and recommended

to prepare a Comprehensive Design Study (CDS) by 2018
à Input to the European strategy consultation to take a decision

about approval of SHiP in 2019/2020

CDS will improve SHiP TP version respecting cost constraints 
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Main goals of the SHiP optimization for the CDS 

ü Further optimization of the target
ü Configuration of the muon shield, including magnetization of the hadron

stopper (MC to be validated with data)
ü Shape, dimension and evacuation of the decay volume

ü Optimization of the emulsion detector to search for LDM
ü Optimization of physics performance for various sub-detectors
ü Revisit detector technologies, including new sub-detectors,

to further consolidate background rejection and extend PID

Updated background estimates and signal sensitivities, and cost 
ü Contribution from the secondary interactions in the target improves

signal yield by ~50%  (to be validated with data)

Detector Optimization

Muon shield 
~30 m

Vacuum vessel ~45m

Neutrino Detector closer to 
the proton target

LDMA	2017	 	
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ü Planning very well aligned with
– Update of European strategy 2019/2020
– Accelerator schedule (to be followed closely)
– Production Readiness Reviews (PRR) 2020Q1  à 
– Construction / production 2020 à 
– Data taking (pilot run) 2026 (start of LHC Run 4)

ü Main current priority: Comprehensive Design Study by 2018

Global SHiP schedule 
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NA62 plans to search for HS (2021-2023) 
2. NA62++	for	hidden	sector	searches

High-intensity	400-GeV	proton	beam	à	boost	charm/beauty,	other	meson	produc8on	
	1018	POT	/	nominal	year:	1012	POT/sec	on	spill,	3.5-s/16.8	s,	100	days/year,	60%	run	efficiency	
	1015	D(S),	1014	K,	1018	π0/η/η’/Φ/ρ/ω	with	raFos	6.4/0.68/0.07/0.03/0.94/0.95	

Compact	beam	dump:	~11	λI	Cu-based	beam-defining	collimator	(TAX)	
	radioprotec8on-compliant	even	if	target	removed	

High-resoluFon	tracking,	PID,	vetoing:	high	sensi8vity	to	closed	signatures	

Decay	volume	~	60	m	long	(in	vacuum):		
	reasonable	acceptance	to	long-lived	states	

2/3/2017	 PBC WGMee8ng - CERN - T. Spadaro 6	

1m	

100	m	50	m	 250	m	150	m	0	m	
Straw	chamber	spectrometer	

LAV	

Large-angle	γ	veto	

Magnet	

RICH	

CHOD	
LKr	calor	

µ veto

SAC	
IRC	

T10	target	

200	m	

TAX	

~22	m	

T.	Spadaro
PBC,		March	2017	
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ü MHNL< Mb   LHCb, Belle2 
     SHiP will have much better sensitivity 
ü Mb<MHNL<MZ  FCC in e+e- mode (improvements are also expected

from ATLAS / CMS)
ü  MHNL>MZ   Prerogative of ATLAS/CMS @ HL LHC

SHiP will also have the best prospects for HS particles produced 
 in heavy flavour decays, e.g. hidden scalars   

HNLs: 
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Projected sensi8vi8es

2/3/2017	 7	PBC WGMee8ng - CERN - T. Spadaro

Assume 2x1018	400-GeV	POT:	
search for displaced, leptonic, two-body decays origina8ng from	the	T10	target
include trigger/acceptance/selec8on efficiency
assume zero-background, evaluate expected 90%-CL exclusion plot	

A’ mass (MeV/c2)	
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See Saw
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|HNL	coupling	to	µ|2

HNL	mass	(GeV/c2)

Future prospects and comparison with other facilities 

MHNL	(GeV)	

	Z	→	N	ν,	N	→	lqq	̄	
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Alain Blondel  FCC-- ee summary6/2/2017 Alain Blondel Physics at the FCCs  29

EWPO

Another example of Synergy and complementarity

detailed study required for all FCCs – especially FCC-hh to understand feasibility at all

to > 40TeV



	

MA’/Mχ=3	

Dark photons: 
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CHARM, NuCal

Orsay, U70

E141

E774

Babar, NA48/2, KLOE, A1, etc

Dark Photons in visible modes: past and future sensitivities

SHiP 

NA62++ in dump mode 
(only mesons & brem.) 

A’	→ visible modes	

J. Alexander et al.,
Dark Sector 2016 Workshop,
Community report,
arXiv:1608:08632

90% UL exclusion 

33 

SHiP is unique up to O (10GeV) and ε2 < 10-11

MA’(MeV)	

Future prospects and comparison with other facilities 
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Conclusions

High energy and high intensity frontier are complimentary:

High energy: search for new heavy particles with O(1)

couplings. Low energy SUSY, composite Higgs, large extra

dimensions, ... LHC, FCC in hh mode

High intensity: indirect search for new heavy particles with

couplings ≪ 1 leading to deviations from the SM through the

loops. LHCb, NA62, BELLE, flavour physics experiments,...

High intensity: search new light particles with couplings ≪ 1.

Heavy neutral leptons, dark photon, ALPs, ... SHiP, NA62,

NA64, FCC in ee mode, ...

CERN is an ideal place to search for Hidden Sector at SPS North

Area with SHiP and NA62 in < O(10) GeV range

FCC ee in Z-peak : up to O(100) GeV

Château de Bossey, June 7 2017 – p.



Backup slides

Château de Bossey, June 7 2017 – p.



SHiP at CERN @ 400 GeV vs US-SHiP at Fermilab @ 120 GeV  

SHiP	
US-SHiP		

40	m	long	and	at	37	m	
from	the	target			

Npot  / year delivered at ~1s extraction 4×1019 ~5.3×1020 

σcc (Ebeam), au 1 1/7 

Detector acceptance (E), au 	1	 0.6	

Trajectory	of	mu	in	Fe(1.8T)	

 Assume: 
- Hypothetical detector US-SHiP has similar size to the SHiP detector
- Slow beam extraction (*)

- The target with the same material (*)

- Full background suppression
- Dedicated to US-SHiP operation (in conflict with neutrino programme)

(*) – technical feasibility to be demonstrated for US-SHiP

ü Similar performance for HS produced in charm decays
Sensitivity for HS produced in B decay is severely compromised, σbb (120/400) = 625

ü Really poor prospects for tau neutrino physics at 120 GeV beam energy
ü SPS @ 400 GeV is ideal to perform the physics programme of SHiP
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