China's Space Astroparticle Program --Strong collaboration with DPNC

Shuang-Nan Zhang(张双南) zhangsn@ihep.ac.cn

Center for Particle Astrophysics Institute of High Energy Physics (IHEP) Chinese Academy of Sciences

Physics vs. Astronomy: my perspective!

- Experimental physics (today):
 - Identifying problems and ask questions → design experiments to solve the problems and answer the questions.
 - Strategies very important.
- Astronomy (always):
 - Just build instruments with new capabilities → make unexpected discoveries.
 - Opportunities very important.

I am an astronomer and so

I will talk only about opportunities today!

China's Space HE Astrophysics Satellites

Hard X-ray Modulation Telescope (HXMT)

Main scientific objectives (1-250 keV energy band)
 ✓ Scan monitoring of the Galactic plane → transients watch dog
 ✓ Pointed observations → Black hole and neutron star x-ray binaries
 ✓ Large MeV ASM → Gamma-ray bursts
 ✓ Collaboration with ISDC → Software and science operation

Satellite Facts:

- ✓ Mass: ~2500 kg
- ✓ Orbit: 550 km, 43°

✓ Lifetime: 4 yrs

Officially approved in March 2011 Planned launch time: June 15, 2017 China's 1st X-ray satellite: open for international cooperation PI: SNZ

HXMT Payloads

Medium (ME): Si-PIN,5-30 keV, 952 cm²

High Energy (HE): Normal Mode Nal, 20-250 keV, ~5000 cm² Csl, 50-700 keV, ~5000 cm² High Energy (HE): GRB Mode Nal, 100-300 keV, 5000 cm² Csl, 200-3000 keV, 5000 cm²

~200 GRBs/year

DAMPE: launched in Dec. 17 2015

W converter + thick calorimeter (total 33 X_0) + precise tracking + charge measurement \implies high energy γ -ray, electron and CR telescope

SVOM: ~2021 launch

Einstein Probe (EP)

Lobster-eye optics

Selected for Phase 0/A in 2013, being approved for launch in 2020-2025.

X-ray Timing and Polarization (XTP) mission

XTP satellite baseline design

enhanced XTP (eXTP=XTP+LOFT)

- 2 lines*5 columns*4 panels = 4 LAD (LOFT)
 - ~3 m² effective area for collimating detectors

Effective Area

eXTP in the Multi-wavelength and Multi-messenger Context of Time Domain Astronomy

Potential European Participants

China's Space Station Program

China's Space Station Astronomy Program

Gamma-ray burst polarization : POLAR

- China- Switzerland
 collaboration
 - Energy range: 50-350 keV;
 FOV of POLAR: ~¹/₂ sky
- Onboard China's spacelab
 TG-2: launch time Sept. 2016
- Main science: GRB jet & central engine; tests of quantum gravity theories

Collaborations of POLAR

- Pls:
 - SNZ, IHEP, China
 - Martin Pohl, DPNC,
 Switzerland

Current status

- Successfully launched on15th/September
- Successfully powered-on on 22nd/September
- Powered-off on 14th/October for docking of TG-2 and Shenzhou-11
- Powered-on again on 18th/November...
- Powered-off since beginning of May for docking and refueling tests

Preliminary results: Crab pulsar

Preliminary results: solar flare

Oct. 12, 2016: consistent with RHESSI results

Best GRB polarization accuracy: GRB170101A

MDP: 6-10% (1-sigma), best compared to previous reports
Calibration in progress

High Energy cosmic-Ray Detector (HERD)

- Mission concept: a flagship and landmark scientific experiment onboard China's Space Station
- Sciences
 - Indirect DM search with unprecedented sensitivity
 - Precise CR spectrum and composition measurements up to the knee energy
 - Gamma-ray monitoring and survey
- Unique capabilities
 - Direct PeV CR observation with best energy resolution
 - Low energy gamma ray observation
 - Largest geometric factors for electrons and cosmic rays
- PI: SZN; Planned launch 2022-2025

HERD payload onboard China's SS

HERD specifications wrt DAMPE

Item	HERD	DAMPE
Energy range(e/y)	10 GeV - 10 TeV (e/γ) 0.5GeV - 10 GeV(γ)	10 GeV—10 TeV
Energy range (CR)	30 GeV - PeV	30 GeV-100 TeV
Angle resolution	0.1 deg.@10 GeV	0.1 deg.@10 GeV
Charge meas.	0.1-0.15 c.u	0.1-0.15 c.u
Energy reso.(e)	1%@200 GeV	1%@200 GeV
Energy reso.(p)	20%@100 GeV-PeV	50%@100GeV-100TeV
e/p discri.	~10 ⁻⁶	~10 ⁻⁵
G.F. (e)	>3 m ² sr@200 GeV	0.3 m ² sr@200 GeV
G.F. (p)	>2 m ² sr@100 TeV	0.12 m ² sr@100 TeV

Expected gamma-ray line sensitivity

PAMELA: 2006-2016 CALET: 2015-2020; AMS: 2011-2024; DAMPE: 2015-2020; Fermi: 2008-2018; HERD: 2023-

AMS02 data consistent with DM model...

And also consistent with Pulsar model

Expected anisotropy of nearby high energy CR sources: Vela-X

Expected anisotropy of nearby high energy CR sources: Cyg Loop

Expected HERD Proton and He Spectra

B/C measurement at HERD

Iron nucleon and super-iron elements

1st HERD workshop, Oct.17-18, 2012, IHEP, Beijing

2nd HERD Workshop @IHEP 2013/12/2-3

3rd HERD Workshop @XIOPM 2016/1/18-21

~20 international participants from Europe & US

International collaboration (120+ colleagues)

China: OSU, IHEP LIPK В ЪU National Central University (NCL Italy: INFN Perugia, University & INFN Firenze, University & Switzerland: University of Geneva; Sweden: KTH; Spain: CIEMA Germany: KIT; Russia: Lebedev Physical Institute Japan: University of Tokyo

4th HERD workshop ASI HQs, Roma, Italy 2017.2.9

HERD instrument teams -- tentative

Subsystem	Led by	Participated by
CALO	IHEP	XIOPM
STK	INFN	DPNC, CIEMAT, KTH, KIT
TRD	THU	GXU (RWTH Aachen)
PSD (+ND)	IHEP	PMO, USTC, IMP
Ground MIP cali.	GXU	IHEP
SPS cali.	INFN	DPNC, IHEP
Payload AIT	IHEP	

HERD beam tests @ CERN

- 1st beam test, Nov. 2015: verified the 1st generation HERD calorimeter design and readout technique (coordinated by DPNC: Prof. Xin Wu)
- 2nd beam test, Oct. 2017: 2nd generation HERD calorimeter (coordinated by DPNC : Prof. Xin Wu), to be followed by the 5th HERD workshop

Summary on China-DPNC collaboration

- Starting from AMS, China-DPNC collaboration on space astroparticle research has been uninterrupted and expanded.
- Current missions: DAMPE, POLAR, HXMT
- Future large missions: eXTP and HERD
 - DPNC participation crucial & encouraged by SSO
- Other possibilities on small-medium scale missions: PANGU, micro-PANGU or POLAR2

Fruitful past and bright future! Great opportunities!