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Lattice unbeatable?

recent prevailing view: 
lattice is unbeatable

as status and perspectives (2018) David d’Enterria

Table 1 summarizes all high-precision as values extracted so far. The c2-averaging of the six sub-
groups of observables currently in the PDG-2017 yields as(m2

Z
) = 0.1181 ± 0.0011 [4]. Inclusion

of the newly derived (red-italics) values has almost no impact in four subclasses (lattice QCD, PDF,
e+e�, Z decays) but would change by �0.4% (+2%) the t- (top)-based pre-averages (Fig. 1). The
updated world-average, combining all results, would thereby be as(m2

Z
) = 0.1183 ± 0.0008 with

slightly increased central value and decreased uncertainty (⇠0.7%).
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Figure 1: as extractions. Top: Current PDG-2017 (solid dots, orange band) and 2018-updated (open dots)
pre-averages. Middle: Expected FCC-ee values via W, Z decays. Bottom: Other less accurate methods today.

3. Future as prospects

Improvements in a few extractions listed in Table 1 are anticipated in the coming years thanks
to new LHC data and more precise calculations. In addition, other sets of observables computed
today with a lower accuracy (NLO, or approximately-NNLO, bottom of Fig. 1), and thereby not
included now in the world-average, will provide additional constraints [2]. Ultimately, as(m2

Z
)

precision in the permille range will require a clean e+e� machine providing many orders-of-
magnitude more jets and electroweak bosons than collected at LEP. Measurements of W hadronic

decays (theoretically known at N3LO) provide today a very imprecise as(m2
Z
) = 0.117 ± 0.030

(⇠30% uncertainty) due to the limited LEP data. Statistical samples of 108 W available at FCC-
ee [6], combined with a significantly reduced parametric uncertainty of the Vcs CKM element,
can ultimately yield das(m2

Z
)/as(m2

Z
) ⇡ 0.3% [22]. Similarly, the high-statistics and clean set

of accurately-reconstructed (and flavour-tagged) e+e� final-states will provide precise as determi-
nations from event shapes, jets rates, and parton-to-hadron fragmentation functions (FF) stud-
ies. The energy dependence of the low-z FF provides today as(m2

Z
) = 0.1205± 0.0022 (⇠2%
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Lattice unbeatable?

recent prevailing view: 
lattice is unbeatable
yet determination of αs 

from experiments remains
desirable 
(or at least a fancy)

e+e— event shapes, jets
✓ are sensitive to αs 
✓ are measured extensively
✓ can almost be computed from first principles          

(assuming local parton-hadron duality)
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Our picture of a high-energy particle 
collision
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Our picture of a high-energy particle 
collision
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Our picture of a high-energy particle 
collision
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Our picture of a high-energy particle 
collision

absent in lepton collisions
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Figure 9: 1-σ confidence-level contours from fits to event-shape variables in a range of
schemes. (a) fits in the default schemes (normal hadron level); (b) fits in the E-scheme
(normal hadron level), with arrows indicating the motion of the contour in going from the
default to the E-scheme; (c) fits in the E-scheme at resonance level, with arrows indicating
the motion of the contour from the decay-scheme, to the hadron-level E-scheme, to the res-
onance E-scheme — here the correction to resonance level has carried out using only events
with light primary quarks; (d) fits in the E-scheme at resonance level where the correction to
resonance level now includes events with heavy primary quarks as well — the arrows indicate
the motion from the ‘uds’ resonance level.

Shapes at NLO+NLL+power corr.+had. mass at LEP
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T = thrust: how pencil-like is the event
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Three-jet event shapes at LEP

‣ LO vs. NLO vs. data: 
 suffer large 
 perturbative & 
 hadronization
 corrections

‣ new since LEP:
✓ NNLO corrections 
✓ N2LL or N3LL resummation
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NNLO is not enough
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(4.29)

is free of ✏-poles, although to perform the algebra for the 1/✏2 and 1/✏ poles still requires some
e↵ort. Hence eq. (4.29) is finite in four dimensions and we can compute the regularized double
virtual di↵erential cross section for any infrared-safe observable numerically.

5 Event shapes old and new

The CoLoRFulNNLO method provides a robust subtraction scheme for computing NNLO cor-
rections to processes with a colorless initial state (for the moment) and any number of final
state jets, provided all necessary matrix elements are known. We have implemented the method
in a general purpose, automated parton-level Monte Carlo code which can be used to compute
any infrared-safe observable at NNLO accuracy in e+e� ! 3 jets. To demonstrate the validity
of our code, we compute NNLO corrections to six standard event shape variables (thrust, heavy
jet mass, total jet broadening, wide jet broadening, C-parameter and the two-to-three jet tran-
sition variable y23 in the Durham algorithm) and compare our predictions to those available
in the literature [5, 6]. We also present here for the first time the computation of jet cone
energy fraction (JCEF) at NNLO accuracy. Predictions from CoLoRFulNNLO at this order
in perturbation theory for oblateness and energy-energy correlation (EEC) were presented in
ref. [7].

5.1 Definition of event shapes

Thrust [76, 77] is defined as

T = max
~n

✓

P

i |~n · ~pi|
P

i |~pi|

◆

, (5.1)

where the three-vectors ~pi denote the three-momenta of the partons and ~n defines the direction
of the thrust axis, ~nT , by maximizing the sum on the right-hand side. For massless particles
thrust is normalized by the center-of-mass energy,

P

i |~pi| = Q. In general 1/2  T  1, with
T = 1/2 for spherically symmetric events, and T ! 1 in the case of two back-to-back jets (the
dijet limit). For three-particle events, we have 2/3  T  1.

Heavy jet mass [78–80] is defined by dividing the event into two hemispheres, HL, HR, by a
plane orthogonal to an axis which can be chosen to be the thrust axis ~nT . Then the hemisphere
invariant mass is

M2
i

s
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E2
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X
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◆2

, i = L,R , (5.2)

19

τ = 1-T

V. Del Duca et al, arXiv:1603.08927  

A, B and C computed with MCCSM (=Monte Carlo for CoLoRFulNNLO 
Subtraction Method) 

New results on on as Zoltán TRÓCSÁNYI

According to the Particle Data Group [] the current world average of the determinations of the
strong coupling as = 0.1181 has an uncertainty of slightly below 1 %. The average is dominated
by the lattice determinations [?] that show the smallest uncertainties by far. Determinations based
on experimental data span a much larger range, over 4 %, which suggests that measuring the strong
coupling in experiments cannot cope with the precision of lattice determination. Yet it is interesting
that the average of as extractions from collider data is about one standard deviation smaller than
the world average, leaving some uneasy feeling related to the value of this important parameter of
nature.

The largest spread of as values appears among the determinations based on measuring the ge-
ometrical properties of hadronic final states in electron-positron annihilation, which is somewhat
counter intuitive as such collisions provide a clean environment with strong interactions affecting
only the final state. The main reasons for the large uncertainties lie in the usually large perturbative
and non-perturbative (hadronisation) effects. This makes the inclusion of higher-order corrections
mandatory. After the colsure of LEP significant advances were made in this respect. On the one
hand the next-to-next-to-leading order (NNLO) corrections have been computed for three-jet like
observables [], while on the other resummation of large logarithms to all orders have been per-
formed at the next-to-next-to-leading logarithmic (NNLL or N2LL)) and in some cases even at
N3LL accuracy [].

Fig. 1(a) shows the predictions for the thrust distribution at LO, NLO and NNLO accuracy, as
given by the perturbative expansion for the normalized cross section, 1

t
s

ds
dt

=
⇣ as

2p

⌘
A(t)+

⇣ as

2p

⌘2
B(t)+

⇣ as

2p

⌘3
C(t) . (1)

Even the most precise prediction falls short significantly over the whole kinematic range, especially
for small values of t where the logarithms L=� lnt become large. This is readily understood from
the analytic structure of perturbative predictions:

A(t) = A1L+A0 ,

B(t) = B3L3 +B2L2 +B1L+B0 ,

C(t) =C5L5 +C4L4 +C3L3 +C2L2 +C1L+C0

(2)

where the dependence of the coefficients on t is suppressed. The logarithmic cntributions have to
be resummed in order to obtain a reliable prediction for small values of t . As shown in Fig. 1(b),
combining the NNLO and N3LL predictions, using R-matching to account for the doubling count-
ing of logarithmic terms, improves the agreement between the prediction and data for the thrust
distribution significantly. Nevertheless, there remains a large gap between the two in the peak re-
gion where most of the data fall. One might expect that the difference between the perturbative
prediction and the data is mainly due to hadronisation corrections.

As for estimating the hadronisation corrections, there are two options: (i) use an analytic
model (power corrections, PC) for the non-perturbative corrections [] in the form of a shift of the
differential distribution

t
s

ds
dt

(t)! t
s

ds
dt

(t �2a0) , (3)

1The A, B and C coefficients were computed using the MCCSM program [] that implements the CoLoRFulNNLO
subtraction method [2, 3].
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Analytic structure of perturbative expansion
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A(t) = A1L+A0 ,

B(t) = B3L3 +B2L2 +B1L+B0 ,

C(t) =C5L5 +C4L4 +C3L3 +C2L2 +C1L+C0

(2)

where the dependence of the coefficients on t is suppressed. The logarithmic cntributions have to
be resummed in order to obtain a reliable prediction for small values of t . As shown in Fig. 1(b),
combining the NNLO and N3LL predictions, using R-matching to account for the doubling count-
ing of logarithmic terms, improves the agreement between the prediction and data for the thrust
distribution significantly. Nevertheless, there remains a large gap between the two in the peak re-
gion where most of the data fall. One might expect that the difference between the perturbative
prediction and the data is mainly due to hadronisation corrections.

As for estimating the hadronisation corrections, there are two options: (i) use an analytic
model (power corrections, PC) for the non-perturbative corrections [] in the form of a shift of the
differential distribution

t
s

ds
dt

(t)! t
s

ds
dt

(t �2a0) , (3)

1The A, B and C coefficients were computed using the MCCSM program [] that implements the CoLoRFulNNLO
subtraction method [2, 3].

2

  .        .         .         .     .        .         .         .   .        .         .         . 

LL    NLL   N2LL  N3LL … 
needs resummation of all orders
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How to improve?
✓ Match to approximate predictions that resum large 

logarithms of the event shapes 
precise predictions are available, e.g.: 

- N3LL for thrust (τ), C-parameter and heavy jet 
mass (ρ) 

- N2LL for broadenings and EEC
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Matching NNLO with N3LL
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How to improve?
✓ Match to approximate predictions that resum large 

logarithms of the event shapes 
precise predictions are available, e.g.: 

- N3LL for thrust (τ), C-parameter and heavy jet 
mass (ρ) 

- N2LL for broadenings and EEC 
✓ Correct for hadronisation 

two options: 
- estimate of hadronisation using modern MC tools 
- use analytic model for power corrections, e.g.:                     

New results on on as Zoltán TRÓCSÁNYI

According to the Particle Data Group [] the current world average of the determinations of the
strong coupling as = 0.1181 has an uncertainty of slightly below 1 %. The average is dominated
by the lattice determinations [?] that show the smallest uncertainties by far. Determinations based
on experimental data span a much larger range, over 4 %, which suggests that measuring the strong
coupling in experiments cannot cope with the precision of lattice determination. Yet it is interesting
that the average of as extractions from collider data is about one standard deviation smaller than
the world average, leaving some uneasy feeling related to the value of this important parameter of
nature.

The largest spread of as values appears among the determinations based on measuring the ge-
ometrical properties of hadronic final states in electron-positron annihilation, which is somewhat
counter intuitive as such collisions provide a clean environment with strong interactions affecting
only the final state. The main reasons for the large uncertainties lie in the usually large perturbative
and non-perturbative (hadronisation) effects. This makes the inclusion of higher-order corrections
mandatory. After the colsure of LEP significant advances were made in this respect. On the one
hand the next-to-next-to-leading order (NNLO) corrections have been computed for three-jet like
observables [], while on the other resummation of large logarithms to all orders have been per-
formed at the next-to-next-to-leading logarithmic (NNLL or N2LL)) and in some cases even at
N3LL accuracy [].

Fig. 1(a) shows the predictions for the thrust distribution at LO, NLO and NNLO accuracy, as
given by the perturbative expansion for the normalized cross section, 1

t
s

ds
dt

=
⇣ as

2p

⌘
A(t)+

⇣ as

2p

⌘2
B(t)+

⇣ as

2p

⌘3
C(t) . (1)

Even the most precise prediction falls short significantly over the whole kinematic range, especially
for small values of t where the logarithms L=� lnt become large. This is readily understood from
the analytic structure of perturbative predictions:

A(t) = A1L+A0 ,

B(t) = B3L3 +B2L2 +B1L+B0 ,

C(t) =C5L5 +C4L4 +C3L3 +C2L2 +C1L+C0

(2)

where the dependence of the coefficients on t is suppressed. The logarithmic cntributions have to
be resummed in order to obtain a reliable prediction for small values of t . As shown in Fig. 1(b),
combining the NNLO and N3LL predictions, using R-matching to account for the doubling count-
ing of logarithmic terms, improves the agreement between the prediction and data for the thrust
distribution significantly. Nevertheless, there remains a large gap between the two in the peak re-
gion where most of the data fall. One might expect that the difference between the perturbative
prediction and the data is mainly due to hadronisation corrections.

As for estimating the hadronisation corrections, there are two options: (i) use an analytic
model (power corrections, PC) for the non-perturbative corrections [] in the form of a shift of the
differential distribution

t
s

ds
dt

(t)! t
s

ds
dt

(t �2a0) , (3)

1The A, B and C coefficients were computed using the MCCSM program [] that implements the CoLoRFulNNLO
subtraction method [2, 3].

2
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Fit to data with NNLO+N3LL+PC
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Fit data on heavy jet mass with 
NNLO+N3LL+PC
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Fit to data with PC
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Fit to data with PC
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EEC @ fixed orders
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FIG. 1: The NNLO coe�cient of the weighted
⌧ = 1� T distribution. The lower panels show the

predictions of ref. [6], denoted as SW, (middle panel)
and those of ref. [5], denoted as GGGH, (lower panel)
normalized to ours, as well as the relative uncertainties
of the numerical integrations (shaded band around the

line at one).

defines thrust minor, where the thrust-minor axis, ~nTm ,
is orthogonal to both the thrust and thrust-major axes.
Oblateness O is then the di↵erence of thrust major and
thrust minor [17],

O = TM � Tm . (9)

The value of the C-parameter for massless final-state
particles is

Cpar =
3

2

P

i,j |~pi||~pj | sin2 ✓ij
(
P

i |~pi|)2
, (10)

where ✓ij is the angle between ~pi and ~pj .
Finally, energy-energy correlation [18] is the nor-

malised energy-weighted cross section defined in terms
of the angle between two particles i and j in an event,

EEC(�) =
1

�had

X

i,j

Z

EiEj

Q2

⇥ d�e+e�!i j+X�(cos�+ cos ✓ij) ,

(11)

where Q2 is the squared center-of-mass energy, Ei and
Ej are the particle energies, ✓ij = ⇡ � � is the angle
between the two particles and �had is the total hadronic
cross section. Experience shows that computing radiative
corrections to the distributions of C-parameter, oblate-
ness and energy-energy correlations is numerically more
challenging than for other three-jet event shapes.

As a validation of our method, we show in figs. 1 and 2
the third-order coe�cient in eq. (5) for O = ⌧ ⌘ 1 � T

FIG. 2: The same as fig. 1 for the C-parameter.

and O = Cpar. We observe a very good numerical con-
vergence of our method at NNLO: the absolute uncer-
tainties of the integrations are shown as shaded narrow
bands around the solid line on the upper panels (hardly
visible) and the relative ones around the lines at one on
the lower panels of figs. 1 and 2. We compare our results
to the predictions of refs. [5, 6] and we find agreement
over a large range of ⌧ and C-parameter. We observe
statistically significant di↵erences beyond the kinemati-
cal limits (⌧ = 1/3 and Cpar = 3/4) where the three-
particle final states vanish and the event shapes are deter-
mined by a four-jet final state. In these regions the C(O)
coe�cients are determined by the NLO corrections to
four-jet production, which have been known for long [2]
and can also be computed with modern automated tools,
such as MadGraph5 aMC@NLO [19]. We have checked that
our predictions are in complete agreement with those of
MadGraph5 aMC@NLO.

We present predictions for the distributions of oblate-
ness O and energy-energy correlation EEC at NNLO ac-
curacy in perturbative QCD for collider energy

p

Q2 =
91.2GeV in figs. 3 and 4. The bands represent the de-
pendence of the predictions on the renormalization scale
varied in the range [0.5, 2] times our default scale: the
total center-of-mass energy. We use ↵s = 0.118 for the
central value and the three-loop running of the strong
coupling for computing the scale variations. The lower
panels show the relative scale dependence of the NNLO
predictions and the relative uncertainties of the integra-
tions. Both oblateness and energy-energy correlation are
known to vanish in the dijet limit. Moreover, oblate-
ness is expected to vanish also for cylindrically symmet-
ric final states, while for three-parton events one has
0  O  1/

p
3. Indications of these features are visi-

ble in figs. 3 and 4.

V. Del Duca et al, arXiv:1603.08927  

only MCCSM can compute NNLO

large corrections
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EEC @ NNLO+NNLL+NP

Z. Tulipánt et al, arXiv:1708.04093  
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Figure 7: NNLL+NNLO matched prediction for EEC. The analytic model of eq. (4.1) is used
to account for hadronization corrections. The bottom panel shows the ratio of the data to the
matched result. The band represents renormalization scale variation in the range µ 2 [Q/2, 2Q]
with three-loop running of ↵

S

.

Finally, the three-parameter fits show that in this approach to hadronization corrections, the
non-perturbative parameter a

1

is more important than a
2

. As stressed already in ref. [5], this
indicates that the parametrization in eq. (4.1) is not able to fully describe the non-perturbative
corrections, especially at medium and large �. Hence, part of the hadronization e↵ects are absorbed
into the strong coupling. This is also apparent from the very strong anti-correlation in the fits
between ↵

S

and the non-perturbative parameter a
2

. Thus, it would be very interesting to repeat
our analysis with hadronization corrections extracted from data by comparison to Monte Carlo
simulations. The results of such an analysis will appear elsewhere [46].

5 Conclusions

In this paper we presented precise QCD predictions for the energy-energy correlation in e+e�

collisions. Our computation includes fixed-order perturbative corrections up to NNLO accuracy, as
well as a resummation of the logarithmically enhanced terms in the back-to-back region at NNLL
accuracy. In order to obtain a description which incorporates the complete perturbative knowledge
about the observable and is valid over a wide kinematical range, the fixed-order and resummed
predictions must be matched. We have implemented this matching in the R scheme at NNLL+NLO
and also, for the first time, in the log-R scheme at both NNLL+NLO and NNLL+NNLO accuracy.
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Figure 6: NNLL+NLO matched predictions for EEC in the R and log-R matching schemes. The
analytic model of eq. (4.1) is used to account for hadronization corrections. The bottom panel
shows the ratio of the data and the R matched prediction to the log-R matched result. The bands
represent the e↵ect of varying the renormalization scale in the range µ 2 [Q/2, 2Q] with two-loop
running of ↵

S

.

Once more, the uncertainties shown include the fit uncertainties and theoretical uncertainties added
in quadrature. The correlation matrix of the fit for the central values again shows that ↵

S

and a
2

are very strongly anti-correlated:

NNLL+NNLO (log-R): corr(↵
S

, a
1

, a
2

) =

0

@
1 0.05 �0.97

0.05 1 �0.07
�0.97 �0.07 1

1

A . (4.7)

We see that the quality of the fit improves drastically compared to the purely perturbative fit
reported in table 1. Moreover, the extracted value of ↵

S

(MZ) is sizably reduced compared to the
fits based on NNLL+NLO predictions and is indeed compatible with the world average within
uncertainties.

Figure 7 shows the comparison of the best fit NNLL+NNLO result to the measured data. We
again observe that the measurement is very well described by the theoretical prediction and, in
particular, the impact of the NNLO correction is clearly visible in the medium � range, where
the agreement between the data and the prediction is now excellent. The systematic deviation
which is present in the NNLL+NLO predictions in this range is completely erased when the NNLO
correction is taken into account. At the same time the best fit value of ↵

S

(MZ) is shifted by about
�6%. We conclude that the inclusion of the fixed-order NNLO correction is essential for a precise
determination of ↵

S

from EEC.
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the fit for the central values:

NNLL+NLO (R): corr(↵
S

, a
1

, a
2

) =

0

@
1 0.04 �0.70

0.04 1 �0.03
�0.70 �0.03 1

1

A . (4.3)

Evidently the strong coupling ↵
S

is highly anti-correlated with the non-perturbative parameter a
2

.

The analysis of ref. [5] performed on the same data gave |a
2

| . 0.002 GeV, a very small
value compatible with a

2

= 0. After fixing the parameter a
2

to zero, a two-parameter fit to the
strong coupling and the remaining non-perturbative parameter a

1

produced the best fit values of
↵
S

(MZ) = 0.130+0.002
�0.004 and a

1

= 1.5+3.2
�0.5 GeV2 with �2/d.o.f. = 0.99. Our results in eq. (4.2) are

compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
incomplete A(3) NNLL resummation coe�cient.

Turning to the log-R matching scheme at NNLL+NLO accuracy, we obtain the results:

NNLL+NLO (log-R): ↵
S

(MZ) = 0.128+0.002
�0.006 , a

1

= 1.17+1.46
�0.29 GeV2 , a

2

= 0.13+0.14
�0.09 GeV ,

(4.4)
and we find �2/d.o.f. = 40.8/48 = 0.85, with the correlation matrix for the central values

NNLL+NLO (log-R): corr(↵
S

, a
1

, a
2

) =

0

@
1 �0.17 �0.98

�0.17 1 0.08
�0.98 0.08 1

1

A . (4.5)

The strong coupling ↵
S

and the a
2

non-perturbative parameter is even more strongly anti-correlated
than in the R matching scheme. As before, the uncertainties in eq. (4.4) include the fit and theo-
retical uncertainties added in quadrature. We observe that the quality of the fits as measured by
�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:

NNLL+NNLO (log-R): ↵
S

(MZ) = 0.121+0.001
�0.003 , a

1

= 2.47+0.48
�2.38 GeV2 , a

2

= 0.31+0.27
�0.05 GeV .

(4.6)
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the fit for the central values:
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Evidently the strong coupling ↵
S

is highly anti-correlated with the non-perturbative parameter a
2

.

The analysis of ref. [5] performed on the same data gave |a
2

| . 0.002 GeV, a very small
value compatible with a

2

= 0. After fixing the parameter a
2

to zero, a two-parameter fit to the
strong coupling and the remaining non-perturbative parameter a

1

produced the best fit values of
↵
S

(MZ) = 0.130+0.002
�0.004 and a

1

= 1.5+3.2
�0.5 GeV2 with �2/d.o.f. = 0.99. Our results in eq. (4.2) are

compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
incomplete A(3) NNLL resummation coe�cient.

Turning to the log-R matching scheme at NNLL+NLO accuracy, we obtain the results:

NNLL+NLO (log-R): ↵
S

(MZ) = 0.128+0.002
�0.006 , a

1

= 1.17+1.46
�0.29 GeV2 , a

2

= 0.13+0.14
�0.09 GeV ,

(4.4)
and we find �2/d.o.f. = 40.8/48 = 0.85, with the correlation matrix for the central values
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The strong coupling ↵
S

and the a
2

non-perturbative parameter is even more strongly anti-correlated
than in the R matching scheme. As before, the uncertainties in eq. (4.4) include the fit and theo-
retical uncertainties added in quadrature. We observe that the quality of the fits as measured by
�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:

NNLL+NNLO (log-R): ↵
S

(MZ) = 0.121+0.001
�0.003 , a

1

= 2.47+0.48
�2.38 GeV2 , a

2

= 0.31+0.27
�0.05 GeV .

(4.6)
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the fit for the central values:
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Evidently the strong coupling ↵
S

is highly anti-correlated with the non-perturbative parameter a
2

.

The analysis of ref. [5] performed on the same data gave |a
2

| . 0.002 GeV, a very small
value compatible with a

2

= 0. After fixing the parameter a
2

to zero, a two-parameter fit to the
strong coupling and the remaining non-perturbative parameter a

1

produced the best fit values of
↵
S

(MZ) = 0.130+0.002
�0.004 and a

1

= 1.5+3.2
�0.5 GeV2 with �2/d.o.f. = 0.99. Our results in eq. (4.2) are

compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
incomplete A(3) NNLL resummation coe�cient.

Turning to the log-R matching scheme at NNLL+NLO accuracy, we obtain the results:
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and we find �2/d.o.f. = 40.8/48 = 0.85, with the correlation matrix for the central values
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The strong coupling ↵
S

and the a
2

non-perturbative parameter is even more strongly anti-correlated
than in the R matching scheme. As before, the uncertainties in eq. (4.4) include the fit and theo-
retical uncertainties added in quadrature. We observe that the quality of the fits as measured by
�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:

NNLL+NNLO (log-R): ↵
S

(MZ) = 0.121+0.001
�0.003 , a

1

= 2.47+0.48
�2.38 GeV2 , a

2

= 0.31+0.27
�0.05 GeV .

(4.6)
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fits based on NNLL+NLO predictions deteriorates quite drastically as evidenced by the rather high
values of �2/d.o.f = 340.3/86 = 3.96 for the R matched prediction and �2/d.o.f. = 440.1/86 = 5.12
for the log-R matched one. At the same time the extracted values of ↵

S

(MZ) become even higher
with ↵

S

(MZ) = 0.134 – 0.135. However, the inclusion of NNLO correction drastically improves the
quality of the fit and we obtain �2/d.o.f. = 95.9/86 = 1.12. The extracted value of ↵

S

(MZ) also
decreases somewhat and we find ↵

S

(MZ) = 0.127± 0.003 for the best fit value.

Our extracted values of ↵
S

(MZ) based on the NNLL+NLO predictions using R matching are
quite close to the values obtained in ref. [5] for all three fit ranges, although our results are
marginally higher. We have checked that these di↵erences are due to the fact that the determina-
tions in ref. [5] used the incomplete A(3) NNLL resummation coe�cient.

Overall, we observe that the inclusion of the fixed-order NNLO corrections reduces the extracted
value of ↵

S

(MZ). This reduction is about �2% to �3% when data in the range 0� < � < 63� are
taken into account, about �2% to �4% for the range 15� < � < 63� and between �5% to �7%
when 15� < � < 120�, depending on the matching prescription used for the NNLL+NLO prediction.
Hence, these corrections must be included in a precise determination of ↵

S

using EEC.

In our analysis so far, we have neglected hadronization corrections. However, non-perturbative
contributions are expected to be relevant, especially at small angles [17, 32–34, 45], and indeed
the OPAL analysis of ref. [15] found hadron-parton correction factors from around 1.5 for very
small � to around 0.9 for large �7. Hence it is important to account for these non-perturbative
contributions. As already mentioned, these can be determined either by extracting them from data
by comparison to Monte Carlo predictions, or by performing analytic model calculations. Here, we
follow the latter option and use the non-perturbative model of ref. [42] to describe the hadronization
contributions. Thus we multiply the Sudakov form factor of eq. (2.14) with a correction of the form

S
NP

= e�
1
2a1b

2
(1� 2a

2

b) , (4.1)

and treat a
1

and a
2

as free parameters of the non-perturbative model to be fitted from data.

We have performed a three-parameter fit including data in the 0� < � < 63� range using
our NNLL+NNLO prediction, as well as the predictions obtained at NNLL+NLO with both R
matching and log-R matching. In the R matching scheme at NNLL+NLO accuracy, we extract the
following parameters:

NNLL+NLO (R): ↵
S

(MZ) = 0.134+0.001
�0.009 , a

1

= 1.55+4.26
�1.54 GeV2 , a

2

= �0.13+0.50
�0.05 GeV ,

(4.2)
with �2/d.o.f. = 38.7/48 = 0.81. All uncertainties are again obtained by adding the fit uncertain-
ties and the theoretical uncertainties in quadrature. The theoretical uncertainties are assessed by
varying the renormalization scale µ between Q/2 and 2Q and repeating the fit. The total uncer-
tainties are mostly dominated by the theoretical uncertainty with the exception of the upper limit
of strong coupling. In this case, we find that the maximal best fit value of ↵

S

is obtained for µ ' Q,
hence the upper limit is controlled by the fit uncertainty. We also report the correlation matrix of

7In ref. [15] only the hadron level data is given in a tabulated form with uncertainties, while the parton level data
appears only in plots. This is nevertheless su�cient to assess the magnitude of the hadron-parton correction factors
even without the original parton level data.
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Figure 7: NNLL+NNLO matched prediction for EEC. The analytic model of eq. (4.1) is used
to account for hadronization corrections. The bottom panel shows the ratio of the data to the
matched result. The band represents renormalization scale variation in the range µ 2 [Q/2, 2Q]
with three-loop running of ↵

S

.

Finally, the three-parameter fits show that in this approach to hadronization corrections, the
non-perturbative parameter a

1

is more important than a
2

. As stressed already in ref. [5], this
indicates that the parametrization in eq. (4.1) is not able to fully describe the non-perturbative
corrections, especially at medium and large �. Hence, part of the hadronization e↵ects are absorbed
into the strong coupling. This is also apparent from the very strong anti-correlation in the fits
between ↵

S

and the non-perturbative parameter a
2

. Thus, it would be very interesting to repeat
our analysis with hadronization corrections extracted from data by comparison to Monte Carlo
simulations. The results of such an analysis will appear elsewhere [46].

5 Conclusions

In this paper we presented precise QCD predictions for the energy-energy correlation in e+e�

collisions. Our computation includes fixed-order perturbative corrections up to NNLO accuracy, as
well as a resummation of the logarithmically enhanced terms in the back-to-back region at NNLL
accuracy. In order to obtain a description which incorporates the complete perturbative knowledge
about the observable and is valid over a wide kinematical range, the fixed-order and resummed
predictions must be matched. We have implemented this matching in the R scheme at NNLL+NLO
and also, for the first time, in the log-R scheme at both NNLL+NLO and NNLL+NNLO accuracy.
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Figure 6: NNLL+NLO matched predictions for EEC in the R and log-R matching schemes. The
analytic model of eq. (4.1) is used to account for hadronization corrections. The bottom panel
shows the ratio of the data and the R matched prediction to the log-R matched result. The bands
represent the e↵ect of varying the renormalization scale in the range µ 2 [Q/2, 2Q] with two-loop
running of ↵

S

.

Once more, the uncertainties shown include the fit uncertainties and theoretical uncertainties added
in quadrature. The correlation matrix of the fit for the central values again shows that ↵

S

and a
2

are very strongly anti-correlated:

NNLL+NNLO (log-R): corr(↵
S

, a
1

, a
2

) =

0

@
1 0.05 �0.97

0.05 1 �0.07
�0.97 �0.07 1

1

A . (4.7)

We see that the quality of the fit improves drastically compared to the purely perturbative fit
reported in table 1. Moreover, the extracted value of ↵

S

(MZ) is sizably reduced compared to the
fits based on NNLL+NLO predictions and is indeed compatible with the world average within
uncertainties.

Figure 7 shows the comparison of the best fit NNLL+NNLO result to the measured data. We
again observe that the measurement is very well described by the theoretical prediction and, in
particular, the impact of the NNLO correction is clearly visible in the medium � range, where
the agreement between the data and the prediction is now excellent. The systematic deviation
which is present in the NNLL+NLO predictions in this range is completely erased when the NNLO
correction is taken into account. At the same time the best fit value of ↵

S

(MZ) is shifted by about
�6%. We conclude that the inclusion of the fixed-order NNLO correction is essential for a precise
determination of ↵

S

from EEC.
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the fit for the central values:

NNLL+NLO (R): corr(↵
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Evidently the strong coupling ↵
S

is highly anti-correlated with the non-perturbative parameter a
2

.

The analysis of ref. [5] performed on the same data gave |a
2

| . 0.002 GeV, a very small
value compatible with a

2

= 0. After fixing the parameter a
2

to zero, a two-parameter fit to the
strong coupling and the remaining non-perturbative parameter a

1

produced the best fit values of
↵
S

(MZ) = 0.130+0.002
�0.004 and a

1

= 1.5+3.2
�0.5 GeV2 with �2/d.o.f. = 0.99. Our results in eq. (4.2) are

compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
incomplete A(3) NNLL resummation coe�cient.

Turning to the log-R matching scheme at NNLL+NLO accuracy, we obtain the results:

NNLL+NLO (log-R): ↵
S

(MZ) = 0.128+0.002
�0.006 , a

1

= 1.17+1.46
�0.29 GeV2 , a

2

= 0.13+0.14
�0.09 GeV ,

(4.4)
and we find �2/d.o.f. = 40.8/48 = 0.85, with the correlation matrix for the central values
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The strong coupling ↵
S

and the a
2

non-perturbative parameter is even more strongly anti-correlated
than in the R matching scheme. As before, the uncertainties in eq. (4.4) include the fit and theo-
retical uncertainties added in quadrature. We observe that the quality of the fits as measured by
�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:
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�2.38 GeV2 , a

2
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the fit for the central values:
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| . 0.002 GeV, a very small
value compatible with a
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= 0. After fixing the parameter a
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strong coupling and the remaining non-perturbative parameter a
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produced the best fit values of
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(MZ) = 0.130+0.002
�0.004 and a
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= 1.5+3.2
�0.5 GeV2 with �2/d.o.f. = 0.99. Our results in eq. (4.2) are

compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
incomplete A(3) NNLL resummation coe�cient.

Turning to the log-R matching scheme at NNLL+NLO accuracy, we obtain the results:
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and we find �2/d.o.f. = 40.8/48 = 0.85, with the correlation matrix for the central values
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and the a
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non-perturbative parameter is even more strongly anti-correlated
than in the R matching scheme. As before, the uncertainties in eq. (4.4) include the fit and theo-
retical uncertainties added in quadrature. We observe that the quality of the fits as measured by
�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:
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| . 0.002 GeV, a very small
value compatible with a
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= 0. After fixing the parameter a
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to zero, a two-parameter fit to the
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�0.004 and a
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= 1.5+3.2
�0.5 GeV2 with �2/d.o.f. = 0.99. Our results in eq. (4.2) are

compatible with these values within uncertainties. We have nevertheless verified that the source
of the discrepancy between the two extractions is, again, due to the fact that ref. [5] used the
incomplete A(3) NNLL resummation coe�cient.

Turning to the log-R matching scheme at NNLL+NLO accuracy, we obtain the results:
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and the a
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non-perturbative parameter is even more strongly anti-correlated
than in the R matching scheme. As before, the uncertainties in eq. (4.4) include the fit and theo-
retical uncertainties added in quadrature. We observe that the quality of the fits as measured by
�2/d.o.f. is very similar in the two matching schemes and the fit results are compatible between
the two schemes within uncertainties. The extracted value of the strong coupling is reduced by
about �5% in the log-R scheme compared to the R scheme, however, it remains high compared to
the world average in both schemes.

We present the comparison of the best fit NNLL+NLO predictions in the R and log-R matching
schemes to the data in figure 6. The figure shows a nice overall agreement between the predictions
and experiment and it is clear that the calculations can reproduce the measurements up to the
smallest measured values of �. Nevertheless, we observe a small but systematic deviation of the
prediction from data in the region of medium � (from about � & 30�) and it is clear that the
shape of the measured distribution is not fully reproduced. The bottom panel shows the ratio of
the data and the R matched prediction to the log-R matched result, with the bands representing
scale uncertainty.

Finally, we investigate the impact of NNLO corrections and repeat the three-parameter fit in
the same range of 0� < � < 63�, but using our most accurate NNLL+NNLO theoretical prediction.
The best fit corresponds to �2/d.o.f. = 56.7/48 = 1.18 and we extract the following parameter
values:
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fits based on NNLL+NLO predictions deteriorates quite drastically as evidenced by the rather high
values of �2/d.o.f = 340.3/86 = 3.96 for the R matched prediction and �2/d.o.f. = 440.1/86 = 5.12
for the log-R matched one. At the same time the extracted values of ↵

S

(MZ) become even higher
with ↵

S

(MZ) = 0.134 – 0.135. However, the inclusion of NNLO correction drastically improves the
quality of the fit and we obtain �2/d.o.f. = 95.9/86 = 1.12. The extracted value of ↵

S

(MZ) also
decreases somewhat and we find ↵

S

(MZ) = 0.127± 0.003 for the best fit value.

Our extracted values of ↵
S

(MZ) based on the NNLL+NLO predictions using R matching are
quite close to the values obtained in ref. [5] for all three fit ranges, although our results are
marginally higher. We have checked that these di↵erences are due to the fact that the determina-
tions in ref. [5] used the incomplete A(3) NNLL resummation coe�cient.

Overall, we observe that the inclusion of the fixed-order NNLO corrections reduces the extracted
value of ↵

S

(MZ). This reduction is about �2% to �3% when data in the range 0� < � < 63� are
taken into account, about �2% to �4% for the range 15� < � < 63� and between �5% to �7%
when 15� < � < 120�, depending on the matching prescription used for the NNLL+NLO prediction.
Hence, these corrections must be included in a precise determination of ↵

S

using EEC.

In our analysis so far, we have neglected hadronization corrections. However, non-perturbative
contributions are expected to be relevant, especially at small angles [17, 32–34, 45], and indeed
the OPAL analysis of ref. [15] found hadron-parton correction factors from around 1.5 for very
small � to around 0.9 for large �7. Hence it is important to account for these non-perturbative
contributions. As already mentioned, these can be determined either by extracting them from data
by comparison to Monte Carlo predictions, or by performing analytic model calculations. Here, we
follow the latter option and use the non-perturbative model of ref. [42] to describe the hadronization
contributions. Thus we multiply the Sudakov form factor of eq. (2.14) with a correction of the form

S
NP

= e�
1
2a1b

2
(1� 2a

2

b) , (4.1)

and treat a
1

and a
2

as free parameters of the non-perturbative model to be fitted from data.

We have performed a three-parameter fit including data in the 0� < � < 63� range using
our NNLL+NNLO prediction, as well as the predictions obtained at NNLL+NLO with both R
matching and log-R matching. In the R matching scheme at NNLL+NLO accuracy, we extract the
following parameters:

NNLL+NLO (R): ↵
S

(MZ) = 0.134+0.001
�0.009 , a

1

= 1.55+4.26
�1.54 GeV2 , a

2

= �0.13+0.50
�0.05 GeV ,

(4.2)
with �2/d.o.f. = 38.7/48 = 0.81. All uncertainties are again obtained by adding the fit uncertain-
ties and the theoretical uncertainties in quadrature. The theoretical uncertainties are assessed by
varying the renormalization scale µ between Q/2 and 2Q and repeating the fit. The total uncer-
tainties are mostly dominated by the theoretical uncertainty with the exception of the upper limit
of strong coupling. In this case, we find that the maximal best fit value of ↵

S

is obtained for µ ' Q,
hence the upper limit is controlled by the fit uncertainty. We also report the correlation matrix of

7In ref. [15] only the hadron level data is given in a tabulated form with uncertainties, while the parton level data
appears only in plots. This is nevertheless su�cient to assess the magnitude of the hadron-parton correction factors
even without the original parton level data.
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How to improve?
✓ Correct for hadronisation, 2nd option:
- estimate of hadronisation using modern MC toolsNon-perturbative corrections
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Hadronization corrections are parametrized using smooth functions to tame
statistical fluctuations

Parametrization is valid only in the fit range
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Energy-energy correlation (see also V. Shtabovenko’s talk)

Energy-energy correlation in e+e� ! jets:

1
�t

d⌃
d cos�

=
1
�t

Z X

i,j

Ei Ej

Q2

d�e+e�!ij+X �(cos�+ cos ✓ij)

Ei and Ej are particle energies, Q is the center-of-mass energy and ✓ij = ⇡ � �
is the angle between the two particles

Was measured at LEP, PEP, PETRA, SLC and TRISTAN

[OPAL Collaboration, P.D. Acton et al. Z. Phys. C59 (1993)] 4

Z. Tulipánt et al, arXiv: 1804.09146
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Fit results

Z. Tulipánt et al, arXiv: 1804.09146

Final results

Global fit at NNLL+NLO:

↵S(MZ ) = 0.12200± 0.00023(exp.)± 0.00113(hadr .)± 0.00433(ren.)± 0.00293(res.)

with combined uncertainty: ↵S(MZ ) = 0.12200± 0.00535

Global fit at NNLL+NNLO:

↵S(MZ ) = 0.11750± 0.00018(exp.)± 0.00102(hadr .)± 0.00257(ren.)± 0.00078(res.)

with combined uncertainty: ↵S(MZ ) = 0.11750± 0.00287

The e↵ect of NNLO on central value is moderate but not negligible, ren.
uncertainty down by a factor of 2, res. uncertainty down by a factor of 3

The overall uncertainty is dominated by theoretical uncertainty (ren. and res.)
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Works better for jet rates

A. Verbitskyi et al, arXiv: 1902.08158

Final results

Global fit at NNLL+NLO:

↵S(MZ ) = 0.12200± 0.00023(exp.)± 0.00113(hadr .)± 0.00433(ren.)± 0.00293(res.)

with combined uncertainty: ↵S(MZ ) = 0.12200± 0.00535

Global fit at NNLL+NNLO:

↵S(MZ ) = 0.11750± 0.00018(exp.)± 0.00102(hadr .)± 0.00257(ren.)± 0.00078(res.)

with combined uncertainty: ↵S(MZ ) = 0.11750± 0.00287

The e↵ect of NNLO on central value is moderate but not negligible, ren.
uncertainty down by a factor of 2, res. uncertainty down by a factor of 3

The overall uncertainty is dominated by theoretical uncertainty (ren. and res.)
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upper bound of the fit range below the kinematical limit for four jet production, log10(y) =
log10(1/6) ' �0.8. We therefore choose log10(y) = �1 as an upper bound. Moreover,
we adapt the lower bound to the centre-of-mass energy in order to take into account that
hadronization corrections become more important at lower energies. Accordingly, we fix
the lower bound log10 ymin(Q) of the fit range as log10 ymin(Q) = log10 ymin(MZ) + L with
L = log10(M

2
Z/Q

2
). Different values used for log10(ymin(MZ)) for R2 and R3 are indicated

in the first columns in Tabs. 2, 4 and 5.

4.1 Fit of the coupling with the two-jet rate R2

To obtain the most precise results, we first concentrate on fits that include the two-jet rate
R2 solely. The results of the fits, together with the used fit ranges, are given in Tab. 2. We
show the results obtained via a fit of R2 both at N3LO and N3LO+NNLL, with different
hadronization models. The corresponding values of �2 divided by the number of degrees
of freedom (ndof) in the global fit is also reported. The values �2/ndof in the global fit
as well as the values for every data set (not shown) are all of order unity, which can be
viewed as a support for our correlation model. These values can be compared to the ones
obtained in similar analyses. For instance, in Ref. [69], the �2/ndof for fits with statistical
uncertainties only varies for different observables between 0.5 and 60.

From the results given in the table one notices that the effect of the resummation is
to move the fitted ↵s(MZ) to slightly lower values. The quality of the fit, with or without
resummation, is very similar. The benefit of including the resummation will become evident
when perturbative uncertainties of the results are discussed.

As our best fit we quote the result obtained from the fits of the R2 observable with the
HL hadronization model in the fit range [�2.25 + L,�1], that reads

↵s(MZ) = 0.11881±0.00063(exp.)±0.00101(hadr.)±0.00045(ren.)±0.00034(res.) , (4.2)

where the quoted uncertainties are coming from MINUIT2 (exp.), variation of renormaliza-
tion scale (ren.), variation of resummation scale (res.) and choice of hadronization model
(hadr.). The estimation of these uncertainties is described in the following subsection.

Finally, we show in Figs. 1, 2 and 3 the comparison of data at different energies with
theory predictions using ↵s(MZ) obtained from our global fit, eq. (4.2).
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NNLO:

compared to result using energy-energy correlation:

6 Summary

The main result of this paper is a first fit of the strong coupling for the two-jet rate that
relies on very accurate (N3LO+NNLL) predictions. Our main result reads

↵s(MZ) = 0.11881± 0.00063(exp.)± 0.00101(hadr.)± 0.00045(ren.)± 0.00034(res.).

The uncertainty on ↵s induced by scale variations is now considerably smaller than that
related to hadronization modelling. This is not the case if the fit is performed using only
N3LO predictions, see Fig. 4. Furthermore the experimental uncertainty is now comparable
to the perturbative one.

After combining the uncertainties in quadrature we obtain

↵s(MZ) = 0.11881± 0.00131(comb.),

where the largest estimation bias comes from the used hadronization model.
Our results agrees with the last PDG average

↵s(MZ)PDG2018 = 0.1181± 0.0011

with an uncertainty that is of the same size.
We have also performed a combined fit of the two- and three-jet rate, taking for the

first time the correlation between these observables into account. The results of the two
fits are fully compatible. However, the fit including R3 shows a stronger dependence on the
fit range than the results of our reference fit based on R2 only. An accurate resummation
for the R3 observable could potentially reduce the sensitivity to the fit range selection and
lead to an even more precise determination of ↵s(MZ).
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Conclusions
Precise determination of the strong coupling using hadronic 
final states in electron-positron annihilation requires

- careful selection of observables (and data — not discussed here)
- methods to reduce hadronisation corrections
- estimation of the hadronisation corrections with modern MCs

New determination  based on NNLO+NNLL+non-perturbative 
corrections from MC simulation gives 

with uncertainty competitive with other determinations

6 Summary
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with an uncertainty that is of the same size.
We have also performed a combined fit of the two- and three-jet rate, taking for the

first time the correlation between these observables into account. The results of the two
fits are fully compatible. However, the fit including R3 shows a stronger dependence on the
fit range than the results of our reference fit based on R2 only. An accurate resummation
for the R3 observable could potentially reduce the sensitivity to the fit range selection and
lead to an even more precise determination of ↵s(MZ).

Acknowledgements

We are grateful to Simon Plätzer and Johannes Bellm for fruitful discussions about the
calculation of NLO predictions with Herwig7.1.4 and to Carlo Oleari for providing us the
Zbb4 code.

The work of A.B. is supported by the Science Technology and Facilities Council (STFC)
under grant number ST/P000819/1. A.K. acknowledges financial support from the Pre-
mium Postdoctoral Fellowship program of the Hungarian Academy of Sciences. A.K. is
also grateful to Dávid Zsoldos for his help with processing the raw data of predictions at
fixed order. This work was supported by grant K 125105 of the National Research, De-
velopment and Innovation Fund in Hungary. The research of P.M. was supported by the
European Commission through the Marie Skłodowska Curie Individual Fellowship, con-
tract number 702610. The work of G.Z was supported in part by ERC Consolidator Grant
HICCUP (No. 614577).

– 18 –



Outlook



31

Outlook: prospects for αs

Determination of strong coupling from e+e— data with 
decreased theoretical uncertainty might be possible

1.4 Quark masses and strong coupling from lattice QCD 9

Method Current relative precision Future relative precision

e+e� evt shapes
expt ⇠ 1% (LEP) < 1% possible (ILC/TLEP)

thry ⇠ 1–3% (NNLO+up to N3LL, n.p. signif.) [27] ⇠ 1% (control n.p. via Q2-dep.)

e+e� jet rates
expt ⇠ 2% (LEP) < 1% possible (ILC/TLEP)

thry ⇠ 1% (NNLO, n.p. moderate) [28] ⇠ 0.5% (NLL missing)

precision EW
expt ⇠ 3% (RZ , LEP) 0.1% (TLEP [10]), 0.5% (ILC [11])

thry ⇠ 0.5% (N3LO, n.p. small) [9, 29] ⇠ 0.3% (N4LO feasible, ⇠ 10 yrs)

⌧ decays
expt ⇠ 0.5% (LEP, B-factories) < 0.2% possible (ILC/TLEP)

thry ⇠ 2% (N3LO, n.p. small) [8] ⇠ 1% (N4LO feasible, ⇠ 10 yrs)

ep colliders
⇠ 1–2% (pdf fit dependent) [30, 31], 0.1% (LHeC + HERA [23])

(mostly theory, NNLO) [32,33] ⇠ 0.5% (at least N3LO required)

hadron colliders
⇠ 4% (Tev. jets), ⇠ 3% (LHC tt̄) < 1% challenging

(NLO jets, NNLO tt̄, gluon uncert.) [17, 21, 34] (NNLO jets imminent [22])

lattice
⇠ 0.5% (Wilson loops, correlators, ...) ⇠ 0.3%

(limited by accuracy of pert. th.) [35–37] (⇠ 5 yrs [38])

Table 1-1. Summary of current uncertainties in extractions of ↵
s

(M2

Z

) and targets for future (5�25 years)
determinations. For the cases where theory uncertainties are considered separately, the theory uncertainties
for future targets reflect a reduction by a factor of about two.

For example, the numerical lattice data for correlators are much cleaner than the experimental data. Further,
the lattice o↵ers several choices of current operators and the most well-behaved one can be chosen for the
determinations; in practice, this turns out to be the pseudoscalar current. The lattice calculations still need
an input from experiment to set the overall energy scale, but this can be chosen in a way that also reduces final
uncertainties. For example, if mc is obtained from the pseudoscalar correlator, choosing m⌘c to set the energy
scale reduces sensitivity to the tuning of the bare charm-quark mass. Using these methods, the HPQCD
Collaboration obtains mc(mc, nf = 4) = 1.273(6) GeV in the MS scheme [35]. By contrast, the Karlsruhe
group obtains mc(mc, nf = 4) = 1.279(13) GeV from e+e� experimental data [39]. The most important
reason for the greater precision of the lattice determination is that the data for the lattice correlation functions
is much cleaner than the e+e� annihilation data. The uncertainty is dominated by continuum perturbation
theory, and therefore may improve only modestly unless another order of perturbation theory is calculated.
However, these charm correlation functions are very easy to calculate with lattice QCD. The lattice part of
this determination will be checked by many lattice groups and should be very robust.

The b quark mass can also be obtained in this way, with the result mb(mb, nf = 5) = 4.164(23) GeV [35].
The sources of systematic uncertainty are completely di↵erent than for mc. Perturbative uncertainties are
tiny because ↵s(mb)4 ⌧ ↵s(mc)4. However, the method requires treating the b quark as a light quark, which
is just barely working at lattice spacings used so far. Discretization errors dominate the current uncertainty,
followed by statistical errors. The lattice result for mb is not currently as precise as the result from e+e�

experimental data, mb(mb, nf = 5) = 4.163(16) GeV [39]. Discretization and statistical errors should be
straightforward to reduce by brute force computing power, and so are likely to come down by a factor of
two in the next few years, perhaps to 0.011 GeV or better. Precisions of that order for mb have already
been claimed from e+e� data from reanalyses of the data and perturbation theory [39], and coming lattice
calculations will be able to check these using the computing power expected in the next few years.

Community Planning Study: Snowmass 2013

J.M. Campbell et al [Snowmass], arXiv: 1310.5189 
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How to improve?
✓ Correct for hadronisation, 2nd option:
- estimate of hadronisation using modern MC tools

✓ Find observable quantities with small perturbative 
and hadronisation corrections:

motto: “large uncertainty in small quantity is small 
uncertainty” 

V. Del Duca et al, arXiv:1606.03453   
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How to improve?
✓ Correct for hadronisation, 2nd option:
- estimate of hadronisation using modern MC tools

✓ Find observable quantities with small perturbative 
and hadronisation corrections:

motto: “large uncertainty in small quantity is small 
uncertainty” 

jet cone energy fraction:                  
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Finally, jet-cone energy fraction [89] is defined as the energy deposited within a conical shell
of the opening angle � between a particle and the thrust axis ~nT , whose direction is defined to
point from the heavy jet mass hemisphere to the light jet mass hemisphere,

d⌃JCEF

d cos�
=

X

i

Z

Ei

Q
d�e+e�!i+X�

✓

cos�� ~pi · ~nT

|~pi|

◆

. (5.9)

In principle 0o  �  180o, but hard gluon emissions typically contribute only to the region
90o  �  180o, which is plotted in the data [90].

5.2 Event shapes revisited

In this section we present the predictions of the CoLoRFulNNLO method for the event shapes
considered also in refs. [5, 6]. To begin, we write the perturbative expansion of the di↵erential
distribution of an event shape observable O at the default renormalization scale (not to be
confused with the regularization scale of section 2.3) µ0 =

p

Q2 (the total center-of-mass
energy) as

1

�0

d�

dO
=

↵s

2⇡
A(O) +

⇣↵s

2⇡

⌘2

B(O) +
⇣↵s

2⇡

⌘3

C(O) + O(↵4
s ) , (5.10)

where ↵s = ↵s(µ0) and �0 is the leading-order perturbative prediction for the total cross section
of the process e+e� ! hadrons. The LO and NLO perturbative coe�cients A(O) and B(O)
for thrust, heavy jet mass, total and wide jet broadening, C-parameter and the jet transition
variable y23 in the Durham algorithm were computed a long time ago [91], while predictions
for the NNLO coe�cients C(O) were presented in [5, 6]3. However, experiments measure the
distributions normalized to the total hadronic cross section, �, thus physical predictions should
be normalized to that. At the default renormalization scale µ0, distributions normalized to
the total hadronic cross section can be obtained from the expansion in eq. (5.10) above by
multiplying with the inverse of

�

�0

= 1 +
↵s

2⇡
At +

⇣↵s

2⇡

⌘2

Bt +O(↵3
s ) (5.11)

where [92–94]
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The renormalization scale dependence of a three-jet event shape distribution normalized to the
total hadronic cross section can be computed as

1

�

d�(µ)

dO
=

↵s(µ)

2⇡
Ā(O;µ) +

✓

↵s(µ)

2⇡

◆2

B̄(O;µ) +

✓

↵s(µ)

2⇡

◆3

C̄(O;µ) + O(↵4
s (µ

2)) , (5.13)

3Since these distributions have 1/O singularities, it is more convenient to present results for the quantities
OC(O) and this was done in refs. [5, 6] as well as in this paper in figures 1–3.
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V. Del Duca et al, arXiv:1606.03453   
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How to improve?
✓ Correct for hadronisation, 2nd option: 
- estimate of hadronisation using modern MC tools 

✓ Find observable quantities with small perturbative 
and hadronisation corrections: 

motto: “large uncertainty in small quantity is small 
uncertainty”                    

- precluster hadrons and compute shapes from 
jets Decamp et al [ALEPH], Phys.Lett. B257 (1991) 479-491 
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Preclustering reduces hadronization 
corrections
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Figure 2: Monte Carlo predictions obtained with old and new EEC.
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Figure 1: Hadronisation corrections obtained for old and new EEC definition.

1

Old: without, New: with plecustering  
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How to improve?
✓ Correct for hadronisation, 2nd option: 
- estimate of hadronisation using modern MC tools 

✓ Find observable quantities with small perturbative 
and hadronisation corrections: 

motto: “large uncertainty in small quantity is small 
uncertainty”                    

- precluster hadrons and compute shapes from 
jets 

- groomed (soft drop) event shapes, designed to 
reduce contamination from non-perturbative 
effects 

Work in progress…

Decamp et al [ALEPH], Phys.Lett. B257 (1991) 479-491 


