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LEP, LHC: SM describes final states of particle 
collisions precisely [remember talks of Monday afternoon]



SM@LHC: theory vs. 36 measurements at CMS
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane (upper left) and in the �–yt plane, in terms of parameter renormalized at the Planck
scale (upper right). Bottom: Zoom in the region of the preferred experimental range of Mh and
Mt (the gray areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to ↵s(MZ) = 0.1184 ± 0.0007, and the grading of the colors indicates the size of the theoretical
error. The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

determined at hadron colliders su↵ers from O(⇤QCD) non-perturbative uncertainties [41]. A

possibility to overcome this problem and, at the same time, to improve the experimental

error on Mt, would be a direct determination of the MS top-quark running mass from ex-

periments, for instance from the tt̄ cross-section at a future e+e� collider operating above

the tt̄ threshold. In this respect, such a collider could become crucial for establishing the

structure of the vacuum and the ultimate fate of our universe.

As far as the RG equations are concerned, the error of ±0.2 GeV is a conservative

estimate, based on the parametric size of the missing terms. The smallness of this error,

compared to the uncertainty due to threshold corrections, can be understood by the smallness

of all the couplings at high scales: four-loop terms in the RG equations do not compete with

finite tree-loop corrections close to the electroweak scale, where the strong and the top-quark

Yukawa coupling are large.

The LHC will be able to measure the Higgs mass with an accuracy of about 100–200

MeV, which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.
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LEP, LHC: SM describes final states of particle collisions 
precisely 

SM is unstable 

No proven sign of new physics beyond SM at colliders*  

*There are some indications below discovery significance (such as muon 
anomalous magnetic moment, lepton flavor non-universality in meson 
decays)
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Universe at large scale described precisely by 
cosmological SM: ΛCDM (Ωm =0.3)

Neutrino flavours oscillate 

Existing baryon asymmetry cannot be explained 
by CP asymmetry in SM

Inflation of the early, accelerated expansion of the 
present Universe
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may give up
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There are many extensions proposed, mostly 
with the aim of predicting some observable 
effect at the LHC — but there are none so far, so 
may give up

SM is highly efficient — let us stick to efficiency
the only exception of economical description is the 
relatively large number of Yukawa couplings 
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Neutrinos must play a key role
with non-zero masses they must feel another force apart from the weak 
one, such as Yukawa coupling to a scalar, which requires the existence of 
right-handed neutrinos

Simplest extension of GSM=SU(3)c×SU(2)L×U(1)Y is to 
G=GSM×U(1)Z 

     renormalizable gauge theory without any other symmetry
Fix Z-charges by requirement of

gauge and gravity anomaly cancellation and
gauge invariant Yukawa terms for neutrino mass generation



Focus only on addition to the SM, 
find SM in this new book:

11



fermion fields: 

where 

(νL can νR can also be Majorana neutrinos, embedded into 
different Dirac spinors) 

covariant derivatives: 

Fermions

12

propose an extension of the particles zoo of the standard model with three right-handed
Dirac neutrinos‡ and the gauge symmetry of the standard model Lagrangian GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to GSM ⇥ U(1)Z . Such extensions have already been consid-
ered in the literature extensively§. In particular, it was shown that the charge assignment
of the matter fields is constrained by the requirement of anomaly cancellations up to two
free charges []. To define the model completely, one has to take a specific choice for these
remaining free charges. In this article we propose a new mechanism for the generation of
neutrino masses that fixes the values of the U(1)Z charges up to an overall scale that can
be embedded in the U(1)Z coupling.

2 Definition of the model

2.1 Fermion sector

We consider the usual three fermion families of the standard model extended with one
right-handed Dirac neutrino in each family.¶ We introduce the notation

 f
q,1 =

✓
U f

Df

◆

L

 f
q,2 = U f

R ,  f
q,3 = Df

R

 f
l,1 =

✓
⌫f

`f

◆

L

 f
l,2 = ⌫fR ,  f

l,3 = `fR

(2.1)

for the quark fields  q and for the lepton fields  l. In Eq. (2.1) L and R denote the left and
right-handed projections,

 L/R ⌘  
⌥

=
1

2
(1⌥ �5) ⌘ PL/R , (2.2)

except for the neutrinos, which di↵er from the charged fermions in the sense that the left and
right-handed fields are not projections of the same field, but denote di↵erent transformation

properties. Then the field content in family f (f = 1, 2 or 3) consists of two quarks, Uf ,
Df , a neutrino ⌫f and a charged lepton `f where Uf is the generic notation for the u-type
quarks U1 = u, U2 = c, U3 = t, while Df is that for d-type quarks, D1 = d, D2 = s
and D3 = b. The charged leptons `f can be `1 = e, `2 = µ or `3 = ⌧ and ⌫f are the
corresponding neutrinos, ⌫1 = ⌫e, ⌫2 = ⌫µ, ⌫3 = ⌫⌧ .

‡The negative results of the experiments searching for neutrinoless double �-decay make the Majorana
nature of neutrinos increasingly unlikely.

§For an incomplete set of popular examples and their studies see [?,?,?]
¶We find natural to assume one extra neutrino in each family although known observations do not

exclude other possibilities.
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Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫

R

are sterile under the G
SM

group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)
c

SU(2)
L

yj zj zj rj = zj/z� � yj
U
L

, D
L

3 2 1

6

Z
1

1

6

0

U
R

3 1 2

3

Z
2

7

6

1

2

D
R

3 1 �1

3

2Z
1

� Z
2

�5

6

�1

2

⌫
L

, `
L

1 2 �1

2

�3Z
1

�1

2

0

⌫
R

1 1 0 Z
2

� 4Z
1

1

2

1

2

`
R

1 1 �1 �2Z
1

� Z
2

�3

2

�1

2

� 1 2 1

2

z� 1 1

2

� 1 1 0 z� �1 �1

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @
[µB⌫], Zµ⌫ = @

[µZ⌫] and W µ⌫ = @
[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T ·W µ⌫ transforms covariantly under G transformations, T ·W µ⌫
G�!

U(x)T ·W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, therefore a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

�sin ✓Z
2

Bµ⌫Z
µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓
B0

µ

Z 0

µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
. (2.8)

In terms of the redefined fields, the covariant derivative becomes

Dµ
j = @µ + ig

L

T ·W µ + igY yjB
0µ + i(g0Z zj � g0Y yj)Z

0µ (2.9)

where g0Y = gY tan ✓Z and g0Z = gZ/ cos ✓Z . Thus the e↵ect of the kinetic mixing is to change
the couplings of the matter fields to the vector field Zµ. Note that we cannot immediately
combine the coupling factor (g0Z zj�g0Y yj) into a single product of a coupling and a charge.
We shall discuss this issue further below.

Gauge symmetry forbids mass terms for gauge bosons. Fermion masses must also be
absent because

m  ̄ = m  ̄
L

 
R

+m  ̄
R

 
L

,

4



Anomaly free charge assignment
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Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The right-handed Dirac neutrinos ⌫R are sterile
under the GSM group. The sixth column gives a particular realization of the U(1)Z charges,
motivated below, and the last one is added for later convenience.

.

field SU(3)c SU(2)L yj zj zj rj = zj/z� � yj
UL, DL 3 2 1

6 z1
1
6 0

UR 3 1 2
3 z2

7
6

1
2

DR 3 1 �1
3 2z1 � z2 �5

6 �1
2

⌫L, `L 1 2 �1
2 �3z1 �1

2 0

⌫R 1 1 0 z2 � 4z1
1
2

1
2

`R 1 1 �1 �2z1 � z2 �3
2 �1

2

� 1 2 1
2 z� 1 1

2

� 1 1 0 z� �1 �1

For a matrix U 2 GSM ⇥ U(1)Z the fields transform as

U 1 (x) = eiT ·↵(x) ei y1�(x) ei z1�(x)  1(x) where T =
1

2
(⌧1, ⌧2, ⌧3)

U j (x) = ei yj�(x)ei zj⇣(x) j(x) where j = 2, 3
(2.3)

and ↵ = (↵1,↵2,↵3), �, ⇣ 2 R. The matrices ⌧i are the Pauli matrices, yj is the hyper-
charge, while zj denotes the Z-charge of the field  j. There is a lot of freedom how to
choose the Z-charges. In this article we make two assumptions that fix these completely.
The first is that the charges do not depend on the families, which is also the case in the
standard model.k With this assumption the assignment for the Z-charges of the fermions
can be expressed using two free parameters z1 and z2 of the U quark fields if we want a
model free of gauge and gravity anomalies. The rest of the charges must take values as
given in Table 1.

The Dirac Lagrangian summed over the family replications,

LD = i
3X

f=1

3X

j=1

⇣
 

f

q,j(x) /D
(j)
 f
q,j(x) +  

f

l,j(x) /D
(j)
 f
l,j(x)

⌘
,

D(j)
µ = @µ + igL T ·W µ + igY yjBµ + igZ zjZµ

(2.4)

kRecent observations [] hint at violation of lepton flavour universality, which may be taken into account
in our model by choosing family dependent Z-charges. However, those results are controversial at present
therefore, we neglect them.

3

essentially from neutrino-scalar interactions
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re-parametrization

The Majorana masses

m
M,i =

m2

i

Mi

(2.40)

are suppressed by the ratios mi/Mi as compared to mi. The latter have a similar role
in the Lagrangian as the mass parameters of the charged leptons, so one may assume
mi ⇠ O(100 keV), while the masses of the right-handed neutrinos can be naturally around
O(100GeV), so that mi/Mi ⇠ O(10�6±1) and m

M,i . 0.1 eV. Thus, if mi ⌧ Mi, then the
mixing between the light and heavy neutrinos will be very small, the ⌫ 0

i,L can be considered
as the mass eigenstates that are mixtures of the left-handed weak eigenstates, and whose
masses can be small naturally as suggested by phenomenological observations.

As we can only observe neutrinos together with their flavours through their charged cur-
rent interactions, it is more natural to use the flavour eigenstates than the mass eigenstates.
In the flavour basis, the couplings of the leptons to the W boson are diagonal:

L(`)
CC

= � g
Lp
2

X

f

⌫
L

f /W
†

`f
L

+ h.c. , (2.41)

with summation over the three lepton flavours f = e, µ and ⌧ . The same charged current
interactions in mass basis ⌫

L,i = (U
PMNS

)if⌫
f
L

, contains the Pontecorvo-Maki-Nakagawa-
Sakata matrix U

PMNS

,

L(`)
CC

= � g
Lp
2

3X

i,f=1

⌫
L,i (UPMNS

)if /W
†

`f
L

+ h.c. , (2.42)

just like the charged current quark interactions contain the Cabibbo-Kobayashi-Maskawa
matrix. If the heavy neutrinos are integrated out, then the matrix U

L

coincides with
the PMNS matrix. For propagating degrees of freedom, such as in the case of travelling
neutrinos over macroscopic distances, one should use mass eigenstates ⌫

L,i and the PMNS
matrix becomes the source of neutrino oscillations in flavour space. However, in the case
of elementary particle scattering processes involving the left-handed neutrinos, one can
work using the flavour basis, i.e. with Eq. (2.41) because the e↵ect of their masses can be
neglected.

2.4 Re-parametrization into right-handed and mixed couplings

Having set the Z-charges of the matter fields, we can re-parametrize the couplings to Z 0

using the new coupling

g0ZY = g0Z � g0Y =
gZ � gY sin ✓Z

cos ✓Z
. (2.43)

Then the covariant derivative in Eq. (2.9) becomes

Dµ
j = @µ + ig

L

T ·W µ + i yjgYB
0µ + i (rjg

0

Z + yjg
0

ZY )Z
0µ (2.44)

10
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Standard Φ complex SU(2)L doublet and new   
� complex singlet:

2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =

✓
�+

�0

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z

0

µ (2.12)

and the potential energy

V (�,�) = µ2
�|�|2 + µ2

�|�|2 +
�|�|2, |�|2�

✓
��

�
2

�
2 ��

◆✓ |�|2
|�|2

◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �2 > 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

� � 4��µ2
�

4���� � �2
, � = w =

s
2�µ2

� � 4��µ2
�

4���� � �2
, (2.15)

provided the conditions

�µ2
� > 2��µ

2
� and �µ2

� > 2��µ
2
� (2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ2

� and µ2
� are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =
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◆
=
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�3 + i�4
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, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z

0

µ (2.12)

and the potential energy
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◆
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �2 > 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

� � 4��µ2
�

4���� � �2
, � = w =

s
2�µ2

� � 4��µ2
�

4���� � �2
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are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ2

� and µ2
� are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length p|�+|2 + |�0|2. The value
of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are

�
±

=
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2
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�� + �� ±

q
(�� � ��)2 + �2
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while the corresponding un-normalized eigenvectors are
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(�+ � ��)
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and u(�) =
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As �+ > 0 and �
�

< 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/
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p
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =
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◆
=
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�3 + i�4
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we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z

0
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and the potential energy
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �2 > 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =
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provided the conditions
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are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ2

� and µ2
� are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
0

v + h0(x)

◆
and �(x) =

1p
2
ei⌘(x)/w

�
w + s0(x)

�
. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when

�0(x) =
1p
2

✓
0

v + h0(x)

◆
and �0(x) =

1p
2

�
w + s0(x)

�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =

✓
��v

2 + ��w
2 ⌥

q
(��v2 � ��w2)2 + (�vw)2

◆1/2

(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions
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cD

�
Ū , D̄

�
L

✓
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�(0)

◆
DR + cU

�
Ū , D̄

�
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�(0) ⇤

��(+) ⇤

◆
UR + c`

�
⌫̄`, ¯̀

�
L

✓
�(+)

�(0)

◆
`R

�

+ h.c.
(2.22)

⇤⇤These are the only symmetries that we could observe in Nature so far.
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and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z
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proportional to w.
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where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions
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⇤⇤These are the only symmetries that we could observe in Nature so far.
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH field � that is an SU(2)L-doublet

� =

✓
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�0

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.12)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.13)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z
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µ (2.14)

and the potential energy
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length p|�+|2 + |�0|2. The value
of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are
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=
1

2

✓
�� + �� ±

q
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, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =
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and u(�) =
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2
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. (2.17)

As �+ > 0 and �
�

< 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/
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2 and � = w/
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2 where the vacuum expectation values (VEVs) are
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After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
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eiT ·⇠(x)/v
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and �(x) =
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. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when
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2
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and �0(x) =
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2
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�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
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◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =

✓
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2 + ��w
2 ⌥

q
(��v2 � ��w2)2 + (�vw)2

◆1/2
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where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions

LY = �

cD
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Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
Ū , D̄
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�(+)
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(2.22)

⇤⇤These are the only symmetries that we could observe in Nature so far.
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where h.c. means hermitian conjugate terms and the parameters cD, cU , c` are called
Yukawa couplings that are matrices in family indices. The Z-charge of the BEH-field
is constrained by U(1)Z invariance of the Yukawa terms to z� = z2 � z1, which works
simultaneously for all three terms.

After spontaneous symmetry breaking and fixing the unitary gauge, this Yukawa La-
grangian becomes

LY = � 1p
2
(v + h(x))

⇥
cD D̄LDR + cU ŪLUR + c` ¯̀L`R

⇤
+ h.c. (2.23)

We see that there are mass terms with mass matrices Mi =
civ
p

2
where i = D, U , `:

LY = �
✓
1 +

h(x)

v

◆⇥
D̄L MD DR + ŪL MU UR + ¯̀

L M` `R
⇤
+ h.c. (2.24)

The general complex matrices Mi can be diagonalized by bi-unitary transformations. The
diagonal elements on the basis of mass eigenstates provide the mass parameters of the
fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments prove that at least two flavours of neutrinos are also
massive. In principle, the standard model charge assignment allows for a gauge invariant
Yukawa term

+c⌫
�
⌫̄`, ¯̀

�
L

✓
�(0) ⇤

��(+) ⇤

◆
⌫R + h.c. (2.25)

where ⌫L and ⌫R are the projections of the same field in the sense of Eq. (2.2). However,
such an option is rather arbitrary for multiple reasons. To mention three: (i) it would not
explain any other deviations from the standard model; (ii) it also would require a rather
unnatural hierarchy of Yukawa couplings, (iii) and such sterile neutrinos have no other role
in the theory and could not be observed directly.

To amend upon this issue, one can assume see-saw type mass generation [?]. In that
case the right-handed neutrino has a Majorana mass term [?]. The source of a Majorana
mass term can be Yukawa couplings to a new scalar, such as � in our case:

LR
Y = �1

2

X

i,j

(cR)ij ⌫c
i,R⌫j,R �+ h.c. (2.26)

The mass term appears after the spontaneous symmetry breaking of the symmtery of the �
field vacuum. At the same time the right-handed neutrino is the gauge singlet partner of the
left handed neutrino with a corresponding Yukawa coupling to the BEH field as in (2.25),
leading to Dirac mass terms after spontaneous symmetry breaking of the SU(2)L ⇥ U(1)Y
symmetry. Although this is a very attractive possibility, the right-handed neutrino has
to be either too heavy or the corresponding Yukawa coupling too small so that it cannot
e↵ectively influence the vacuum of the standard model [], which remains metastable.
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lead to fermion masses after SSB:

Neutrino Yukawa terms  (                   ):

After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
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and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z
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where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.
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where h.c. means hermitian conjugate terms and the parameters cD, cU , c` are called
Yukawa couplings that are matrices in family indices. The Z-charge of the BEH-field
is constrained by U(1)Z invariance of the Yukawa terms to z� = z2 � z1, which works
simultaneously for all three terms.

After spontaneous symmetry breaking and fixing the unitary gauge, this Yukawa La-
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The general complex matrices Mi can be diagonalized by bi-unitary transformations. The
diagonal elements on the basis of mass eigenstates provide the mass parameters of the
fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments prove that at least two flavours of neutrinos are also
massive. In principle, the standard model charge assignment allows for a gauge invariant
Yukawa term
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where ⌫L and ⌫R are the projections of the same field in the sense of Eq. (2.2). However,
such an option is rather arbitrary for multiple reasons. To mention three: (i) it would not
explain any other deviations from the standard model; (ii) it also would require a rather
unnatural hierarchy of Yukawa couplings, (iii) and such sterile neutrinos have no other role
in the theory and could not be observed directly.

To amend upon this issue, one can assume see-saw type mass generation [?]. In that
case the right-handed neutrino has a Majorana mass term [?]. The source of a Majorana
mass term can be Yukawa couplings to a new scalar, such as � in our case:
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i,j

(cR)ij ⌫c
i,R⌫j,R �+ h.c. (2.26)

The mass term appears after the spontaneous symmetry breaking of the symmtery of the �
field vacuum. At the same time the right-handed neutrino is the gauge singlet partner of the
left handed neutrino with a corresponding Yukawa coupling to the BEH field as in (2.25),
leading to Dirac mass terms after spontaneous symmetry breaking of the SU(2)L ⇥ U(1)Y
symmetry. Although this is a very attractive possibility, the right-handed neutrino has
to be either too heavy or the corresponding Yukawa coupling too small so that it cannot
e↵ectively influence the vacuum of the standard model [], which remains metastable.
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fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos
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for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0Z , we set z2 freely. For instance, choosing z2 = 7/6 implies
z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:
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Standard Yukawa terms:

lead to fermion masses after SSB:

Neutrino Yukawa terms  (                   ):

After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
0

v + h0(x)

◆
and �(x) =

1p
2
ei⌘(x)/w

�
w + s0(x)

�
. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when

�0(x) =
1p
2

✓
0

v + h0(x)

◆
and �0(x) =

1p
2

�
w + s0(x)

�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =

✓
��v

2 + ��w
2 ⌥

q
(��v2 � ��w2)2 + (�vw)2

◆1/2

(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions

LY = �

cD

�
Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
Ū , D̄

�
L

✓
�(0) ⇤

��(+) ⇤

◆
UR + c`

�
⌫̄`, ¯̀

�
L

✓
�(+)

�(0)

◆
`R

�

+ h.c.
(2.22)

⇤⇤These are the only symmetries that we could observe in Nature so far.

6

where h.c. means hermitian conjugate terms and the parameters cD, cU , c` are called
Yukawa couplings that are matrices in family indices. The Z-charge of the BEH-field
is constrained by U(1)Z invariance of the Yukawa terms to z� = z2 � z1, which works
simultaneously for all three terms.

After spontaneous symmetry breaking and fixing the unitary gauge, this Yukawa La-
grangian becomes

LY = � 1p
2
(v + h(x))

⇥
cD D̄LDR + cU ŪLUR + c` ¯̀L`R

⇤
+ h.c. (2.23)

We see that there are mass terms with mass matrices Mi =
civ
p

2
where i = D, U , `:

LY = �
✓
1 +

h(x)

v

◆⇥
D̄L MD DR + ŪL MU UR + ¯̀

L M` `R
⇤
+ h.c. (2.24)

The general complex matrices Mi can be diagonalized by bi-unitary transformations. The
diagonal elements on the basis of mass eigenstates provide the mass parameters of the
fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments prove that at least two flavours of neutrinos are also
massive. In principle, the standard model charge assignment allows for a gauge invariant
Yukawa term

+c⌫
�
⌫̄`, ¯̀

�
L

✓
�(0) ⇤

��(+) ⇤

◆
⌫R + h.c. (2.25)

where ⌫L and ⌫R are the projections of the same field in the sense of Eq. (2.2). However,
such an option is rather arbitrary for multiple reasons. To mention three: (i) it would not
explain any other deviations from the standard model; (ii) it also would require a rather
unnatural hierarchy of Yukawa couplings, (iii) and such sterile neutrinos have no other role
in the theory and could not be observed directly.

To amend upon this issue, one can assume see-saw type mass generation [?]. In that
case the right-handed neutrino has a Majorana mass term [?]. The source of a Majorana
mass term can be Yukawa couplings to a new scalar, such as � in our case:

LR
Y = �1

2

X

i,j

(cR)ij ⌫c
i,R⌫j,R �+ h.c. (2.26)

The mass term appears after the spontaneous symmetry breaking of the symmtery of the �
field vacuum. At the same time the right-handed neutrino is the gauge singlet partner of the
left handed neutrino with a corresponding Yukawa coupling to the BEH field as in (2.25),
leading to Dirac mass terms after spontaneous symmetry breaking of the SU(2)L ⇥ U(1)Y
symmetry. Although this is a very attractive possibility, the right-handed neutrino has
to be either too heavy or the corresponding Yukawa coupling too small so that it cannot
e↵ectively influence the vacuum of the standard model [], which remains metastable.

7

fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos

L⌫
Y = �

X

i,j

✓
(c⌫)ijL̄i,L · �̃ ⌫j,R +

1

2
(cR)ij ⌫c

i,R⌫j,R �

◆
+ h.c. (2.31)

for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0Z , we set z2 freely. For instance, choosing z2 = 7/6 implies
z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:

L⌫
Y = �1

2

X

i,j

"
�
⌫L, ⌫c

R

�
i
M(h, s)ij

✓
⌫c
L

⌫R

◆

j

+ h.c.

#
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where

6x6 symmetric matrix (mD complex, MM real)
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which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
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z1 = 1/6 and the Z-charge of the BEH scalar is
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while that of the new scalar is
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While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
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After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
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where

6x6 symmetric matrix (mD complex, MM real)

in diagonal: Majorana mass terms (so νL massless!)
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of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:
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If mi << Mj , can integrate out the heavy 
neutrinos

where                     are Majorana masses

with complex mD and real MM being symmetric 3 ⇥ 3 matrices, so M(0, 0) is a complex
symmetric 6 ⇥ 6 matrix. The diagonal elements of the mass matrix M(0, 0) provide Ma-
jorana mass terms for the left-handed and right-handed neutrinos. Thus we conclude that
the model predicts vanishing masses of the left-handed neutrinos at the fundamental level.

The o↵-diagonal elements represent interaction terms that look formally like Dirac mass
terms, �Pi,j ⌫i,L(mD)ij⌫j,R+ h.c. After spontaneous symmetry breaking the quantum
numbers of the particles ⌫c

i,L and ⌫i,R are identical, hence they can mix. Thus the prop-
agating states will be a mixture of the left- and right-handed neutrinos, so those can be
obtained by the diagonalization of the full matrix M(0, 0).

In order to understand the structure of the matrix M(0, 0) better, we first diagonalize
the matrices mD and MM separately by a unitary transformation and an orthogonal one.
Defining

⌫ 0

L,i =
X

j

(UL)ij⌫L,j and ⌫ 0

R,i =
X

j

(OR)ij⌫R,j , (2.38)

we can rewrite the neutrino Yukawa Lagrangian as
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X

i,j
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0c
R

⌘

i
M 0(h, s)ij

✓
⌫

0c
L

⌫ 0

R

◆

j

+ h.c.

#
(2.39)

where

M 0(h, s) =

 
0 mV
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1 + h

v

�

V †m
�
1 + h

v

�
M
�
1 + s

w

�

!
. (2.40)

In Eq. (2.40) m and M are real diagonal matrices, while V = UT
L OR is a unitariy matrix,

V V † = 1, so M 0(0, 0) is mainfestly Hermitian with real eigenvalues that are the masses of
the mass eigenstates of neutrinos. In general,M 0(0, 0) may have 15 independent parameters:
mi and Mi (i = 1, 2 ,3), while there are three Euler angles and six phases V . Three phases
can be absorbed into the definition of ⌫ 0

L.

Assuming the hierarchy mi ⌧ Mj, we can integrate out the right-handed (heavy)
neutrinos and obtain an e↵ective higher dimensional operator with Majorana mass terms
for the left-handed neutrinos

L⌫
dim�5 = �1

2

X

i

mM,i

✓
1 +

h

v

◆2 ⇣
⌫

0c
i,L⌫

0

i,L + h.c.
⌘
. (2.41)

The Majorana masses

mM,i =
m2

i

Mi

(2.42)

are suppressed by the ratios mi/Mi as compared to mi. The latter have a similar role
in the Lagrangian as the mass parameters of the charged leptons, so one may assume
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W 3

µ

B0
µ

Z 0
µ

1

A = M(sin ✓W, sin ✓T)

0

@
Z0
µ

Tµ

Aµ

1

A

2.6 Mixing in the neutral gauge sector

The neutral gauge fields of the standard model and the Z 0 mix, which leads to mass
eigenstates Aµ, Zµ and Tµ. The mixing is described by a 3⇥ 3 mixing matrix as

0

@
W 3

µ

B0

µ

Z 0

µ

1

A =

0

@
cos ✓W cos ✓T cos ✓W sin ✓T sin ✓W

� sin ✓W cos ✓T � sin ✓W sin ✓T cos ✓W
� sin ✓T cos ✓T 0

1

A

0

@
Z0

µ

Tµ

Aµ

1

A . (2.40)

For the Weinberg mixing angle ✓W we have the usual value sin ✓W = gY /
p
g2L + g2Y . We

introduce the notion of reduced coupling defined by �i = gi/gL, i.e. �L = 1. Then we have

sin ✓W =
�Yp
1 + �2Y

, cos ✓W =
1p

1 + �2Y
(2.41)

and for the mixing angle ✓T of the Z 0-boson we find

sin ✓T =

"
1

2

 
1� 1� 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

cos ✓T =

"
1

2

 
1 +

1� 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#1/2
,

(2.42)

so tan(2✓T ) = 2/(1� 2 � ⌧ 2), with

 =
�0ZY + �0Zp

1 + �2Y
, ⌧ = 2

�0Z tan �p
1 + �2Y

< 2 tan � (2.43)

and
tan � =

w

v
(2.44)

is the usual ratio of the scalar vacuum expectation values. For small values of the new
couplings �ZY and �0Z , implying small , we have

✓T = +O(⌧ 2,3) . (2.45)

The charged current interactions remain the same as in the standard model. The neutral
current Lagrangian can be written in the form

LNC = LQED + LZ0 + LT (2.46)

where the first term is the usual Lagrangian of QED,

LQED = �eAµJ
µ
em , Jµ

em =
3X

f=1

3X

j=1

ej

⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
, (2.47)
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the second one is a neutral current coupled to the Z0 boson,

LZ0 = �eZ0
µ

⇣
cos ✓TJ

µ
Z0 + sin ✓TJ

µ
T

⌘
= �eZ0

µJ
µ
Z0 +O(✓T ) (2.48)

and the third one is the neutral current coupled to the T boson,

LT = �eTµ

⇣
sin ✓TJ

µ
Z0 + cos ✓TJ

µ
T

⌘
= �eTµJ

µ
T +O(✓T ) . (2.49)

In Eq. (2.47) e is the electric charge unit and ej is the electric charge of field  j in units of
e. In Eqs. (2.48) and (2.49) Jµ

Z0 is the usual neutral current of the Z0 boson,

Jµ
Z0 =

3X

f=1

3X

j=1

T3 � sin2 ✓W ej
sin ✓W cos ✓W

⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
, (2.50)

while the new neutral current has the same dependence on fermion dynamics with di↵erent
coupling strength:

Jµ
T =

3X

f=1

3X

j=1

�0Zrj + �0ZY yj
sin ✓W

⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
. (2.51)

As the dependence on the couplings and charges of the neutral currents in Eqs. (2.50)
and (2.51) are very di↵erent for di↵erent fermion fields, the only way that the standard
model phenomenology is not violated by the extended model if ✓T is small, which supports
the expansions used in Eqs. (2.48) and (2.49).

To define the perturbation theory of this model explicitly, we present the Feynman rules
in Appendix ??.

2.7 Masses of the gauge bosons

The photon is massless, while the masses of the massive neutral bosons are

MZ0 = MW
cos ✓T
cos ✓W

h
(1 +  tan ✓T )

2 + (⌧ tan ✓T )
2
i1/2

(2.52)

and

MT = MW
sin ✓T
cos ✓W

h
(1�  cot ✓T )

2 + (⌧ cot ✓T )
2
i1/2

(2.53)

where MW = 1
2vgL and we assumed MT < MZ0 . Indeed, in order to have MZ0 within the

experimental uncertainty of the known measured value, we need ✓T ' 0 (precise constraint
will be presented elsewhere), which justifies the expansions at  = 0,

MZ0 =
MW

cos ✓W

�
1 + O(2)

� ' MW

cos ✓W
(2.54)
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As the dependence on the couplings and charges of the neutral currents in Eqs. (2.50)
and (2.51) are very di↵erent for di↵erent fermion fields, the only way that the standard
model phenomenology is not violated by the extended model if ✓T is small, which supports
the expansions used in Eqs. (2.48) and (2.49).
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in Appendix ??.
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As the dependence on the couplings and charges of the neutral currents in Eqs. (2.50)
and (2.51) are very di↵erent for di↵erent fermion fields, the only way that the standard
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the expansions used in Eqs. (2.48) and (2.49).

To define the perturbation theory of this model explicitly, we present the Feynman rules
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As the dependence on the couplings and charges of the neutral currents in Eqs. (2.50)
and (2.51) are very di↵erent for di↵erent fermion fields, the only way that the standard
model phenomenology is not violated by the extended model if ✓T is small, which supports
the expansions used in Eqs. (2.48) and (2.49).

To define the perturbation theory of this model explicitly, we present the Feynman rules
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As the dependence on the couplings and charges of the neutral currents in Eqs. (2.50)
and (2.51) are very di↵erent for di↵erent fermion fields, the only way that the standard
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To define the perturbation theory of this model explicitly, we present the Feynman rules
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The massive T vector boson is a natural candidate for WIMP dark 
matter if it is sufficiently stable (mass of ~1 MeV: super weak new 
force). 

Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations. 

Diagonalization of neutrino mass terms leads to the PMNS matrix, 
which in turn can be the source of lepto-baryogenesis.

The vacuum of the χ scalar is charged (zj = −1) that may be a source 
of accelerated expansion of the universe as seen now. 

The second scalar together with the established BEH field may be 
the source of hybrid inflation. 
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Contribution of the new gauge boson to  
the anomalous magnetic moment of the muon
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using the new neutral currents:

where

Z0, T

Figure 1: Feynman diagram containing the e↵ect of the new vector boson on the anomalous
magnetic moment of the muon at one loop accuracy.

the same steps as in the case of the electroweak corrections [23–26], so we present only the
result for the exchange of a massive U(1) gauge boson X (X = Z0) or T0):
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The contribution of the Z0 boson in the standard model is recovered by setting h±
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Figure 1: Feynman diagram containing the e↵ect of the new vector boson on the anomalous
magnetic moment of the muon at one loop accuracy.

the same steps as in the case of the electroweak corrections [23–26], so we present only the
result for the exchange of a massive U(1) gauge boson X (X = Z0) or T0):
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The contribution of the Z0 boson in the standard model is recovered by setting h±
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where we used Eqs. (2.58) and (2.59) together with Eq. (2.51) and the definitions in Eqs. (2.48)
and (2.49). According to Ref. [4], numerically
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experimentally:

• The neutrino Yukawa terms provide a source for the PMNS matrix as shown in in
Sect. 2.3, which in turn can produce leptogenesis (and hence baryogenesis).

• The vacuum of the � scalar has a charge zj = �1 (or rj = �1) that may be a source
of the current accelerated expansion of the universe.

• The second scalar together with the established BEH field can cause hybrid inflation.

In order that the model makes these explanations credible, we have to find answer to the
following question: Is there any region of the parameter space of the model that is not
excluded by experimental results, both established in standard model phenomenology and
elsewhere? Of course, answering this question requires studies well beyond the scope of a
single article. Here we shall focus on the constraints over the parameter space that can be
obtained from the standard model phenomenology and in particular from the anomalous
magnetic moment of the muon.

4 Anomalous magnetic moment of the muon

There is a long standing deviation between the experimental result and predicted standard
model value of the anomalous magnetic moment of the muon [20],

a(exp)µ � a(SM)

µ = 268(76) · 10�11 . (4.1)

Here we assume that this di↵erence–which will be tested by the increased precision of future
experiments–is due to the e↵ect of the new gauge boson to the anomalus magnetic moment
and we estimate the allowed values for the ratio tan � of the vacuum expectation values
and that of the mixed coupling �0

ZY and the right coupling �0

Z ,

⇢0Z =
�0
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�0

Z

= 1� �0
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�0

Z
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Note that if ⇢0Z were vanishing, then the new gauge boson couples only to right-handed
fermions.

As the new U(1)Z sector may influence the standard model phenomenology only within
the current experimental uncertainties, the new gauge coupling must be small. Therefore,
the use of first order perturbation theory is justified. At one-loop accuracy, the only new
contributions to the anomaly constant aµ = (gµ � 2)/2 emerge due to the modified Zµ̄µ
interaction and the new interaction T µ̄µ, both presented in the Appendix. The only new
Feynman graph is a triangle with the exchange of a T0 boson between the muon legs, which
is formally identical to the triangle with the exchange of a Z0 boson between the muon legs
as shown in Fig. 1. Consequently, the computation follows the same steps as in the case of
the electroweak corrections [21–24], so we present only the result for the exchange of a Z0,
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Figure 1: Feynman diagram containing the e↵ect of the new vector boson on the anomalous
magnetic moment of the muon at one loop accuracy.
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f defined in Eq. (A.1) for the right/left-handed muon. The contri-
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where we used Eqs. (2.58) and (2.59) together with the definitions in Eqs. (2.48) and (2.49)
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Figure 1: Feynman diagram containing the e↵ect of the new vector boson on the anomalous
magnetic moment of the muon at one loop accuracy.

the same steps as in the case of the electroweak corrections [23–26], so we present only the
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July’16 run: A�explanation for(g-2)µ is ruled out   	
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Exact tree-level calculations  of cross sections  σ(eZ->eZA�). 	
Large corrections to the WW approximation for mA�> ~100 MeV.	
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Figure 3: Feynman diagram producing a photon and a T0 boson in electron-positron anni-
hilation.
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is proportional to the square of the kinetic mixing parameter ✏. As the T0 boson couples
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6 Conclusions

In this paper we collected the well established experimental observations that cannot be ex-
plained by the standard model of particle interactions. We have then proposed an anomaly
free extension by a U(1)Z gauge group, which is the simplest possible model. We also
assumed the existence of a new complex scalar field with Z-charge only (i.e. neutral with
respect to the standard model interactions) and three right-handed neutrinos. In order
to fix the Z-charges of the particle spectrum we assumed that the left- and right-handed
neutrinos have opposite Z-charges. Thus such a model predicts the existence of (i) a mas-
sive neutral vector boson, (ii) a massive scalar particle and (iii) three massive right-handed
neutrinos. The left-handed neutrinos remain massless as in the standard model, but their
Yukawa interactions with the BEH field and the right-handed neutrinos provide a field
theoretical basis for explaining neutrino oscillations and predict e↵ective Majorana masses
for the propagating mass eigenstates.
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