

university of groningen

 faculty of mathematics and natural sciences

Diatomic Molecules as Probes for Nuclear Anapole Moment Effect

Yongliang Hao¹, Miroslav Iliaš², and Anastasia Borschevsky¹

¹University of Groningen ²Matej Bel University

Jun. 12, 2019

Nuclear spin dependent parity violating effects

The NSD-PV effects can be described by the following Hamiltonian,

$$H_{NSD} = \frac{G_F}{\sqrt{2}I} \sum_{i} \left(\kappa_{ax} + \kappa_{hfs} + \kappa_A\right) \left(\boldsymbol{\alpha}_i \cdot \mathbf{I}\right) \rho\left(r_i\right), \tag{1}$$

where G_F is the Fermi coupling constant; α_i are Dirac matrices; I is nuclear spin; $\rho(r_i)$ is the nuclear density distribution.

- κ_{ax} is independent on A: the electroweak neutral coupling between electron vector and nucleon axial vector currents
- κ_{hfs} is much smaller than κ_A : the nuclear-spin-independent weak interaction combined with the hyperfine interaction (depend on nuclear spin)
- $\kappa_A \sim A^{2/3}$: the nuclear anapole moment contribution

Here A is the mass number of the nucleus.

The last one is the contribution from the nuclear anapole moment effect. Since $\kappa_A \sim A^{2/3}$. It is the dominant contribution for molecules containing heavy element. In a valence nucleon model, κ_A has the following form [V. V. Flambaum, I. B. Khriplovich, and O. P. Sushkov, Phys. Lett. B **146**, 367 (1984)],

$$\kappa_A = 1.15 \times 10^{-3} \left(\frac{K}{I+1}\right) A^{\frac{2}{3}} \mu_i g_i.$$
(2)

◆□ ▶ < 圕 ▶ < Ξ ▶ < Ξ ▶ Ξ のQ@ 2/7</p>

Nuclear anapole moment

Image courtesy of V. V. Flambaum

A non-zero anapole moment was reported by Wood *et al.* with the size of $\kappa_A \sim 0.127 \pm 0.019$ for Cs, a result differing from zero by 7σ . [Science **275**, 1759 (1997)]

The nuclear anapole moment interaction violates parity. It is the interaction between the nuclear anapole moment and the molecular electronic function that can be described by

$$H_A = \kappa_A \frac{G_F(\boldsymbol{\alpha} \cdot \mathbf{I})}{\sqrt{2}I} \rho(\mathbf{r})$$

For ${}^{2}\Sigma_{1/2}$ and ${}^{2}\Pi_{1/2}$ electronic states, the nuclear anapole moment interaction can be replaced by

$$H_A = \kappa_A W_A \frac{(\mathbf{n} \times \mathbf{S}') \cdot \mathbf{I}}{I}$$

Here, the W_A depends on electronic structure and can be used to extract information from experiments. It can be defined as follows:

$$W_{A} = rac{G_{F}}{\sqrt{2}} \left\langle \Psi_{2\Sigma_{1/2}} \left| \rho(\mathbf{r})(\alpha_{x} + i\alpha_{y}) \right| \Psi_{2\Sigma_{-1/2}} \right\rangle$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Magnitude of the effect

The nuclear anapole moment mixes molecular states with opposite parity.

$$\Psi'_{+} = \Psi_{+} + i\eta_{A}\Psi_{-} \tag{3}$$

$$i\eta_A = rac{\langle \Psi_+ | H_A | \Psi_-
angle}{E_+ - E_- + i\Gamma/2} \sim 10^{-11}$$
 (4)

$$|\eta_A|^2 \sim 10^{-22}$$
 (5)

Here, Ψ_+ has even parity and Ψ_- has

odd parity. The magnitude of the effect is extremely small. If 10^{22} molecules experience an allowed electromagnetic transition, there would be only one that experiences transition induced by the nuclear anapole moment interaction. This tiny effect needs to be amplified:

- Zeeman effect (increasing the mixing coefficient)
- Stark effect (Stark-PV technique: measuring $\eta_S \eta_A$ instead of η_A^2 , since $\frac{\eta_S}{\eta_A} \sim 10^5$ (Wood1997))

◆□▶ < 圖▶ < 圖▶ < 圖▶ < 圖▶ < 圖 · 의 Q · 4/7</p>

Zeeman effect

Image from Altunas, et al, Phys. Rev. A 97, 042101 (2018)

$$i\eta_A = \frac{\langle \Psi_+ | H_A | \Psi_- \rangle}{E_+ - E_- + i\Gamma/2} \tag{6}$$

<ロ > < 部 > < 注 > < 注 > 注 の へ つ 5/7

Stark effect and Stark-PV technique

The Stark effect can also mix molecular states with opposite parity.

$$H_{S}(\epsilon) = -\epsilon \cdot \mathbf{D} \tag{7}$$

$$i\eta_{S} = \frac{\langle \Psi_{+} | H_{S} | \Psi_{-} \rangle}{E_{+} - E_{-} + i\Gamma/2}$$
(8)

$$\frac{\eta_S}{\eta_A} \approx 10^5 \tag{9}$$

$$\eta_{S}(-\epsilon) = -\eta_{S}(\epsilon)$$
 (10)

Since η_S is odd with respect to the electric field, we could measure $\eta_S \eta_A$ instead of η_A^2 . If we switch on the electric field, the total signal should be

$$S(\epsilon) = |\eta_{S}(\epsilon) \pm \eta_{A}|^{2}$$

= $\eta_{S}(\epsilon)^{2} \pm 2\eta_{S}(\epsilon)\eta_{A} + \eta_{A}^{2}$ (11)

If we flip the electric field, the mixing

term will change sign:

$$S(-\epsilon) = |\eta_S(-\epsilon) \pm \eta_A|^2$$

= $\eta_S(\epsilon)^2 \mp 2\eta_S(\epsilon)\eta_A + \eta_A^2$ (12)

$$2\eta_S(\epsilon)\eta_A \gg \eta_A^2$$
 (13)

Then the asymmetry due to nuclear anapole interaction could be obtained by

$$P_{a} = \frac{S(\epsilon) - S(-\epsilon)}{S(\epsilon) + S(-\epsilon)}$$

$$\approx 2 \frac{\langle \Psi_{+} | H_{A} | \Psi_{-} \rangle}{\Delta} \frac{\omega}{d\epsilon}$$
(14)

where Δ , ω and $d\epsilon$ are experimental parameters and should be known [Altunas, *et al*, Phys. Rev. Lett. **120**, 142501 (2018)]. Once $\langle \Psi_+ | H_A | \Psi_- \rangle$ is known, one could derive κ_A using the value of W_A .

Thank you for your attention

<ロ > < 回 > < 回 > < 豆 > < 豆 > < 豆 > う Q @ 7/7