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H2 and Isotopologues as Benchmark Molecule

• Simplest neutral molecule

• Internal nuclear motion 

• Numerous transition available to 
test calculation

Dissociation energy D0(J=1) of H2
C. Cheng et al. PRL 121, 013001 (2018)

H2 High rotational state
v = 0, J = 0-16
E.J. Salumbides et al., PRL 107, 043005 (2011)

H2 High vibrational state
v = 10-12
M.L. Niu et al. JCP 143, 081102 (2015)

H2 HD and D2

Fundamental band (v = 1  0)
G. D. Dickenson et al., PRL 110, 193601 (2013)

HD
First Overtone (v = 2  0)
F.M.J. Cozijn et al., PRL 120, 153002 (2018)

D0

v = 0

v = 1

v = 2

J = 4

J = 8

J = 12

J = 16

v = 10-12



H3He+ vs       HT

• Studies on heavier tritium-containing isotopologues
doubles the no. candidates 

• Non-adiabatic contribution is smaller with larger 
reduced mass

• Investigate g-u mixing contribution in HT and DT

T2 DT HT

Non-adiabatic correction to E(4)

Heavier Tritiated Species
𝐸𝑙𝑒𝑣𝑒𝑙 = 𝛼2𝐸(2) + 𝛼4𝐸(4) + 𝛼5𝐸(5) +⋯

𝐸(2) = 𝐸(2,0) + 𝐸(2,1) + 𝐸(2,2)
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M. Puchalski et al., PRL 121, 073001  (2018)



NAPT calculation by P. Czachorowski

Calculation on tritiated species

Uncertainty fundamental band v = 1 0 
~10-4 cm-1 for DT and HT
6 x 10-5 cm-1 for T2

100-fold improvement to C. Schwartz et al. (1987)



Uncertainty of old measurement on 
vibrational transition

T2 and DT
> 5 x 10-2 cm-1

HT
> 5 x 10-3 cm-1

J.E. Barefield et al. J. Mol. Spectosc. 
80, 233-236 (1980) 

“Recent” experiment on tritiated species

M.C. Chuang et al. J. Mol. Spectosc. 
121, 380-400 (1987) 

Latest calculation uncertainty 
< 10-4 cm-1



Experimental challenge

Tritium sample from Tritium laboratory in KIT

Legal limit: <1 GBq radioactivity

~ 2.5 mbar T2, or

~ 4 mbar DT,

(HT is preparing)

in 4 cm3 well-sealed gas cell

Limited methods for measurement

Not feasible for molecular beam experiment

T → 3He+ + e− + ഥνe

Beta decay of tritium
Half-life : 12.3 years



Coherent Anti-Stokes Raman Scattering 

v = 1, J

v = 0, J

Virtual state

ωp ωpωs ωas

𝜔𝑎𝑠 = 2𝜔𝑝 − 𝜔𝑠
𝜔𝑅 = 𝜔𝑝 − 𝜔𝑠

Pump

Stokes

Anti-Stokes

Pump

Advantage

• Non-destructive and sensitive method

• Anti-Stokes signal can be easily separated

Visible blue light of Q(1) transition from 1 bar D2

Q-branch
ΔJ = 0

Broadband CARS spectrum of 
DT Q-branch



Doppler-limited measurement

ωp ωpωs ωas

𝜔𝑎𝑠 = 2𝜔𝑝 − 𝜔𝑠
𝜔𝑅 = 𝜔𝑝 − 𝜔𝑠

Pump

Stokes

Anti-Stokes

Pump

Doppler-limited spectrum

Q-branch
Doppler Width @ 
Room temp

D2 550 MHz

HT 630 MHz

DT 450 MHz

T2 370 MHz

FWHM ∼
2𝝎𝟎

𝑐

2𝑘𝑇 ln 2

𝑀

𝝎𝟎

T2 Q(1)

450 MHz



Experimental Setup

Stabilized 
HeNe laser

Seeded pulsed 
Nd-YAG (532nm)

Pulsed dye 
amplifier

Wavemeter

CW ring 
dye laser

Chirp analysis

I2 saturation

Reference etalon
FSR ~ 150 MHz

Gas cell

PMT

Bandpass 
filter

Lens 1 
f = 20cm

Lens 2 
f = 10cm

ωas

ωp

ωsv = 1, J’

v = 0, J”

Virtual state

ωp ωpωs ωas

Pump

Stokes

Anti-Stokes

Pump

Freq. uncertainty:
6 MHz



Experimental Setup

Stabilized 
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Stokes cw-pulse freq. offset

~ 20 (5) MHz  for DCM dye
~ -30 (5) MHz for Rh. 101 dye

cw light freq. uncertainty:
1 MHz

610-620 nm
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Ion Detection

Benchmark: D2 Q-branch

60 MHz

Fundamental band (v = 1  0) with molecular beam setup 
G. D. Dickenson et al., PRL 110, 193601 (2013) 

D2 Q(2)
~ 8 mbar in DT cell

700 MHz

Uncertainty D2 Q-branch
4.5 MHz / 1.5 x 10-4 cm-1

Preparation of DT
D2 + T2 D2 + DT + T2

4  :  1



Δ Molecular beam experiment
● This work

Benchmark: D2 Q-branch

D2 Q(2) ac-Stark analysis



Comparison with old results



Comparison with calculation



Comparison with calculation
Mainly dominated non-adiabatic contribution of E(2)

Possible to do full calculation on E(2)

With uncertainty ~ 10-8 cm-1

T2  Q(1) uncertainty < 10-5 cm-1

> 10-times less than our measurement uncertainty



Doppler-limited measurement
• Molecular beam CARS (not for tritiated species)

~100 MHz (laser bandwidth of current setup)

• Cooling sample cell with pre-cooled air
300 K  ~ 100 K

450 MHz  ~250 MHz

• Saturation CARS

Q-branch Doppler 
Width @ room temp

D2 550 MHz

HT 630 MHz

DT 450 MHz

T2 370 MHz ~ 300 MHz

T2 Q(1)

450 MHz

FWHM ∼
2𝜔0

𝑐

2𝑘𝑻 ln 2

𝑀



Saturation of CARS profile

1. Saturation in upper level

2. Interference coherence (Qi) by different velocity classes

𝐼𝑎 ∼ ෍

𝑖
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Saturation of CARS profile

D2 Q(2)

• Unexpected ac-stark shift

• Doppler profile getting more asymmetric at high energy

• Position of saturation dip is not centered at Doppler profile

• Need full understanding about the saturated profile

T2 Q(1)



Pure Rotational Transition

v = 0, J+2

v = 0, J

Virtual state

ωp ωpωs ωas

𝜔𝑎𝑠 = 2𝜔𝑝 − 𝜔𝑠

Pump

Stokes

Anti-Stokes

Pump S-branch
ΔJ = 2

S(0) Doppler Width
@ room temp

Expected linewidth

D2 33 MHz
<100 MHz

(depending on 
laser bandwidth)

HT 44 MHz

DT 27 MHz

T2 22 MHz𝝎𝟎

T2 S(0) 𝝎𝟎 ~ 120 cm-1

Requiring 2 laser sources 
working at similar freq.
+
Separate anti-Stokes for 
detection H.G.M. Edwards et al. J. Chem. Sot. 

Faraday Trans. II 74, 1203-
1207 (1978).



Conclusion & Outlook

• D2 Q(0)-Q(2) show good agreement with molecular beam experiment

• T2 and DT Q(0)-Q(5) have been measured with 12 MHz uncertainty

• All of them have good agreement with latest calculated value

• Move on to last isotopologue HT
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