Two-loop self-energy corrections to the g-factor of bound electrons

Bastian Sikora1, Vladimir A. Yerokhin1,2, Natalia S. Oreshkina1, Halil Cakir1, Niklas Michel1, Vincent Debierre1, Nikolay A. Belov1, Jacek Zatorski1, Zoltán Harman1, Christoph H. Keitel1

1Max Planck Institute for Nuclear Physics, Heidelberg, Germany
2Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

FFK-2019
June 12, 2019
g-factor — definition

g-factor of bound electron in ground state $|1s\rangle$ of hydrogenlike ion:

$$\mu_e = g \frac{eJ}{2m_e} ; \quad \delta E = -\langle 1s | \mu_e B | 1s \rangle = -g \frac{eB}{4m_e}$$

δE: energy splitting due to external magnetic field B (Zeeman effect)
g-factor — definition

\(g \)-factor of bound electron in ground state \(|1s\rangle \) of hydrogenlike ion:

\[
\mu_e = g \frac{eJ}{2m_e} ; \quad \delta E = -\langle 1s | \mu_e B | 1s \rangle = -g \frac{eB}{4m_e} \]

\(\delta E \): energy splitting due to external magnetic field \(B \) (Zeeman effect)

Contributions to the bound-electron \(g \)-factor

\[
\Delta E_{\text{mag}} = -\frac{2}{3}i \int dr \, r^2 \text{Bier} \, f(r)g(r)
\]

\[
g_D = \frac{2}{3} + \frac{4}{3} \sqrt{1 - (Z\alpha)^2}
\]
g-factor — definition

g-factor of bound electron in ground state $|1s\rangle$ of hydrogenlike ion:

$$\mu_e = g \frac{eJ}{2m_e}; \quad \delta E = -\langle 1s | \mu_e B | 1s \rangle = -g \frac{eB}{4m_e}$$

δE: energy splitting due to external magnetic field B (Zeeman effect)

Contributions to the bound-electron g-factor

\[
\Delta E_{\text{mag}} = -\frac{2}{3} i \int dr \, r^2 \, B(r) f(r) g(r)
\]

\[
g_D = \frac{2}{3} + \frac{4}{3} \sqrt{1 - (Z\alpha)^2}
\]
g-factor — definition

g-factor of bound electron in ground state $|1s\rangle$ of hydrogenlike ion:

\[
\mu_e = g \frac{e J}{2m_e} ; \quad \delta E = -\langle 1s | \mu_e B | 1s \rangle = -g \frac{eB}{4m_e}
\]

δE: energy splitting due to external magnetic field B (Zeeman effect)

Contributions to the bound-electron g-factor

\[
\Delta E_{\text{mag}} = -\frac{2}{3} i \int \text{dr} \, r^2 B(r) f(r) g(r)
\]

\[
g_D = \frac{2}{3} + \frac{4}{3} \sqrt{1 - (Z\alpha)^2}
\]
Two-loop self-energy (SESE) diagrams

Largest uncertainty in theoretical g-factor predictions due to uncalculated SESE diagrams

Loop after loop (LAL):

Nested loop (NL):

Overlapping loop (OL):
Largest uncertainty in theoretical g-factor predictions due to uncalculated SESE diagrams

Loop after loop (LAL):

Nested loop (NL):

Overlapping loop (OL):

Separation of two-loop SESE into LAL, F, P, M
Two-loop self-energy (SESE) diagrams

Largest uncertainty in theoretical g-factor predictions due to uncalculated SESE diagrams

Loop after loop (LAL):

Nested loop (NL):

Overlapping loop (OL):

Separation of two-loop SESE into LAL, F, P, M

Done Ongoing