
${ }^{1}$ Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
${ }^{2}$ Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia

Zeeman effect and g-factor
Magnetic moment $\boldsymbol{\mu}$ of electron

$$
\boldsymbol{\mu}=g \frac{e J}{2 m_{e}}
$$

e. electron charge, m_{e} : ele tum, g : electron g-factor [1]
Bound electron: energy shift δE of ground state $\langle 1 s\rangle$ with magetic quantum number m_{j} in external magnetic field B :

δE computed using the Two-time Green Function method [2].

Applications

- precision tests of QED in the presence of strong electromagnetic background fields [3, 4]
- determination of the electron mass $[5,6]$
- determination of the muon mass [7]
- determination of the fine-structure constant $[8,9]$
- test of physics beyond the standard model [10]

Theoretical description
$\xlongequal[=]{\xi_{=}^{\nabla}} g=2\left(C^{(0)}+C^{(2)}\left(\frac{\alpha}{\pi}\right)+C^{(4)}\left(\frac{\alpha}{\pi}\right)^{2}+\cdots\right)$
$C^{(2 n)}=C_{\text {free }}^{(2 n)}+\delta C_{\text {bound }}^{(2 n)}(Z \alpha) \widehat{=}$ sum of all Feynman diagrams with n closed loops [1]
Non-perturbative determination of $C^{(2 n)}$: "Furry picture"

Leading g-factor diagram

$\begin{aligned} \Delta E_{\text {mag }} & =-\frac{2}{3} i \int_{0}^{\infty} \mathrm{d} r r^{2} \text { Bier f(r)g(r) } \\ g_{\mathrm{D}} & =\frac{2}{3}+\frac{4}{3} \sqrt{1-(Z \alpha)^{2}}\end{aligned}$

- Finite nuclear size
- Finite nuclear mass (recoil) [11, 12]
- Nuclear deformation [13]
- Nuclear polarization [14]

Feynman diagrams with one loop

- Self-energy (SE): interaction of the electron with the photon field

$$
g_{\mathrm{SE}}=\frac{\alpha}{\pi}\left(1+\frac{(Z \alpha)^{2}}{6}\right)+\cdots \quad[15,16]
$$

- Vacuum polarization (VP): creation of a virtual charged particle antiparticle pair

$$
g_{\mathrm{VP}}=-\frac{16}{15}\left(\frac{\alpha}{\pi}\right)(Z \alpha)^{4}\left(\frac{m_{e}}{m_{\text {loop }}}\right)^{2}+
$$

Feynman diagrams with two loops
 \&
 $$
\frac{\sum_{8}^{8} \sin _{2}}{\text { ser }}
$$

- Diagrams with two VP loops (VPVP) [19, 20]
- Diagrams with one SE and one VP loop (SEVP) [20]
- Diagrams with two SE loops (SESE) [21]

Magnetic loop VP diagrams: see poster by V. Debierr

Two-loop SESE corrections

Theoretical uncertainty of g-factor dominated by uncalculated higher-order SESE correction

SESE diagrams

LAL, Irreducible and LAL, Reducible

- Electron propagator between SE loop and magnetic interaction: $G_{\mathrm{D}}=\sum_{n} \frac{|n\rangle\langle n|}{E_{1}-E_{n}}$
\Rightarrow Split into ${ }^{2}$ irreducible" $\left(E_{n} \neq E_{1 s}\right)$ and "reducible" $\left(E_{n}=E_{1 s}\right)$
- In LAL, up to two such electron propagators
\Rightarrow Regroup LAL contributions into
LAL, irred
LAL, red

Computation of LAL, irred: generalization of one-loop QED, with $|1 s\rangle \longrightarrow\left|\delta_{\Sigma} 1 s\right\rangle$

$$
{ }^{s^{m} / 3}
$$

$$
\left|\delta_{\Sigma} 1 s\right\rangle=\sum_{n, n \neq 1 s} \frac{|n\rangle\langle n| \Sigma|1 s\rangle}{E_{1 s}-E_{n}}
$$

Renormalization

- LAL, irred: UV and IR finite
- LAL, red: UV and IR divergent
$\left.\begin{array}{ll}- \text { N: } & \text { UV and IR divergent } \\ \text { - O: } & \text { UV and IR divergent }\end{array}\right\} \Longrightarrow$ divergences cancel
To deal with UV divergences, the N and O diagrams are divided into three terms [22].
- F-term: diagrams with only free internal electron lines (UV diver gences
- M-term: diagrams with bound internal electron lines (no UV divergences)
- P-term: diagrams with bound internal electron lines and a UV divergent subdiagram

Examp

Numerical results for F-term \& LAL, irred

$$
\Delta g=\left(\frac{\alpha}{\pi}\right)^{2} F(Z \alpha)
$$

- Zero-potential: two-loop diagrams with free internal electron lines no interaction with the nuclear potential
- One-potential: two-loop diagrams with free internal electron lines, one interaction with the nuclear potential
- Reducible: products of two one-loop functions ($\widehat{=}$ part of LAL, red) Our numerical results for the F-term converge to the free-electron value $F(0)=-0.68833 \ldots$ for low Z. [21, 15]

Two-loop SESE - outlook
IR divergences, methods

- Summation of diagrams whose IR divergences cancel
(g-factor, one-loop SE [16|)
- Subtraction terms to cancel IR divergences
(Lamb shift, two-loop SESE [22])
Numerical challenges
M-term • $\int \mathrm{d} \omega_{1} \int \mathrm{~d} \omega_{2} \int \mathrm{~d} r_{1} \cdots \int \mathrm{~d} r_{5} f(\cdots)$
- $\sum_{k_{1}, k_{2}} g_{\kappa_{1}, \kappa_{2}}$ (infinite summations)

P-term • Numerical Fourier transform

- $\sum g_{\kappa_{1}}$ (infinite summation)

Consistency checks

- Comparison with perturbative determination of $C^{(4)}[15,23]$
- Comparison with SESE correction to Lamb shift [22]
- Further ideas would be highly appreciated

Possibilities after complete two-loop calculation

- Improved theoretical accuracy of bound-electron g-factor for high $Z \Longrightarrow$ Comparison with experimental g-factors (ALPHATRAP/ARTEMIS)
- Improvement of accuracy of α

Access to the muon mass

$\left.\begin{array}{l}\text { Larmor frequency: } \quad \omega_{\mathrm{L}}=g \frac{e}{2 m_{\mu}} B \\ \text { Cyclotron frequency: } \omega_{\text {cycl }}=\frac{Q}{m_{\mathrm{ion}}} B\end{array}\right\} \Longrightarrow m_{\mu}=\frac{g}{2} \frac{e}{Q} \frac{\omega_{\text {cycl }}}{\omega_{\mathrm{L}}} m_{\text {ion }}$

- $\frac{Q}{e}$ known exactly
- $m_{\text {ion }}$ known very precisely

Muonic ${ }^{4} \mathrm{He}^{+}$

- $m_{\text {ion }}$ known very precis
- Small uncertainty of nuclear effects
- $\frac{\omega_{\mathrm{L}}}{\omega_{\text {cycl }}}$ from experiment
- Sum of all considered terms:
- g-factor from theory $g=2.0021951934(20)_{\text {calc }}(50)_{\text {uncal }}$ $\xrightarrow{\longrightarrow}$ possibility of improvement of muon mass accuracy by one order of magnitude $[7]$
\longrightarrow alternative access to the controversial free-muon g factor with the subtraction of binding effects from theory $[7]$

References

[1] T. Beier, Physics Reports, 339:79, 2000
[2] V. M. Shabaev, Physics Reports, 356:119, 2002
[3] S. Sturm, A. Wagner, B. Schabinger, et al. Phys. Rev. Lett, 107:023002, 2011
[4] Z. Harman, B. Sikora, V. A. Yerokhin, et al. J. Phys. Conf. Ser. 1138:012002, 2018
[5] S. Sturm, F. Köhler, J. Zatorski, et al. Nature, 506:467, 2014
[6] J. Zatorski, B. Sikora, S. G. Karshenboim, et al. Phys. Rev. A, 96:012502, 2017
[7] B. Sikora, H. Cakir, N. Michel, et al. Phys. Rev. D, 97:111301(R), 2018
[8] V. M. Shabaev, D. A. Glazov, N. S. Oreshkina, et al. Phys. Rev. Lett., 96:253002, 2006
[9] V. A. Yerokhin, E. Berseneva, Z. Harman et al. Phys. Rev. Lett., 116:100801, 2016
[10] V. Debierre, C. H. Keitel and Z. Harman, submitted; arXiv:1901.06959, 2019
[11] V. M. Shabaev and V. A. Yerokhin, Phys. Rev. Lett., 88:091801, 2002
[12] K. Pachucki, Phys. Rev. A, 78:012504, 2008
${ }^{[13]}$ N. Michel, J. Zatorski, N. S. Oreshkina and C. H. Keitel, Phys. Rev. A, 99:012505, 2019
[14] A. V. Volotka and G. Plunien, Phys. Rev. Lett., 113:023002, 2014 $[15]$ K. Pachucki, A. Czarnecki, U. D. Jentschura and V. A. Yerokhin, Phys. Rev. A, 72:022108, 2005
[16] V. A. Yerokhin, P. Indelicato and V. M. Shabaev, Phys. Rev. A, 69:052503, 2004
$[17]$ S. G. Karshenboim, V. G. Ivanov, and V. M. Shabaev, J. Exp. Theor. Phys., 93:477, 2001
[18] N. A. Belov, B. Sikora, R. Weis, et al., submitted; arXiv:1610.01340, 2016
[19] U. D. Jentschura, Phys. Rev. A, 79:044501, 2009
${ }^{\prime} 20 \mid$ V. A. Yerokhin and Z. Harman, Phys. Rev. A, 88:042502, 2013 [21] B. Sikora, V. A. Yerokhin, N. S. Oreshkina, et al., submitted; arXiv:1804.05733, 2018
[22] V. A. Yerokhin, P. Indelicato and V. M. Shabaev, Eur. Phys. J. D, 25:203, 2003
[23] A. Czarnecki, M. Dowling, J. Piclum and R. Szafron, Phys. Rev. Lett., 120:043203, 2018

