The virtual-Delbruck-scattering potential for light muonic atoms

Evgeny Korzinin
D.I.Mendeleyev Institute for Metrology (VNIIM)
St. Petersburg, Russia
Outline

1) Three types of light-by-light-scattering diagrams in muonic atoms

2) The static-muon approximation and its applicability

3) The effective potential for the virtual Delbrück scattering
 - numerical data
 - asymptotics
 - resulting fit

4) small summary

D.I.Mendeleyev Institute for Metrology (VNIIM)
Light-by-light-scattering diagrams in muonic atoms

The Bohr radius in muonic atoms is comparable with the Compton wavelength of an electron. So the diagrams with the closed electron loops are enhance in QED theory of muonic atoms.
Light-by-light-scattering diagrams in muonic atoms

Specific type of the diagrams with the closed electron loops is related to Light-by-light scattering

(1:3) Wichmann-Kroll contribution

(2:2) the virtual Delbrück scattering contribution

(3:1) without special name
Light-by-light-scattering diagrams in muonic atoms

(1:3) Wichmann-Kroll contribution has been studied for a while.

J. Blomkwist (1972) gives analytical representation for the WK potential

Light-by-light-scattering diagrams in muonic atoms

Two other diagrams contains Coulomb Green-function of the muon, that makes it difficult to calculate.

First result for (3:1) was published in 2010

Nonrelativistic contributions of order $\alpha^5 m_{\mu} c^2$ to the Lamb shift in muonic hydrogen and deuterium, and in the muonic helium ion

Contribution of Light-by-Light Scattering to Energy Levels of Light Muonic Atoms†

S. G. Karshenboima,b, E. Yu. Korzinina, V. G. Ivanova,c, and V. A. Shelyutoa
The static-muon approximation

We reduced the contribution to the case of the static-muon approximation.

\[\Delta E_{3:1}(ns) = \frac{1}{Z^2} \Delta E_{1:3}(ns) \]

(1:3) (2:2) (3:1)
The effective potential for the virtual Delbrück scattering (2:2) was presented in the momentum space

\[\Delta E_{2:2} = \int \frac{d^3q}{(2\pi)^3} V_{2:2}(q^2) F(q^2), \]

\[V_{2:2}(q^2) = \frac{3}{4\pi} \alpha^2 (Z\alpha)^2 \int_0^1 dx \int_0^1 dy \int_0^1 dz \int_0^1 du \int_0^1 dv \int_0^1 dw \int_0^1 dt \]

\times \sum_{k=1,2} \left\{ \frac{B_{2:2}^{(k)}}{(s_{2:2}^{(k)} q^2 + m_e^2)} + \frac{C_{2:2}^{(k)} q^2}{(s_{2:2}^{(k)} q^2 + m_e^2)^2} + \frac{D_{2:2}^{(k)} q^4}{(s_{2:2}^{(k)} q^2 + m_e^2)^3} \right\}, \]
The effective potential for the virtual Delbrück scattering

Fourier transformation gives result in the coordinate space

\[
V_{2:2}(r) = \frac{3}{4\pi} \alpha^2 (Z\alpha)^2 \int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1} dz \int_{0}^{1} du \int_{0}^{1} dv \int_{0}^{1} dw \int_{0}^{1} dt \sum_{k=1,2} \exp \left(-\frac{m_e r}{\sqrt{s_{2:2}^{(k)}}} \right)
\]

\[
\times \left\{ \frac{B_{2:2}^{(k)}}{4\pi s_{2:2}^{(k)} r} + \frac{C_{2:2}^{(k)}}{(s_{2:2}^{(k)})^3} \frac{2s_{2:2}^{(k)} - m_e r \sqrt{s_{2:2}^{(k)}}}{8\pi r} + \frac{D_{2:2}^{(k)}}{(s_{2:2}^{(k)})^4} \frac{8s_{2:2}^{(k)} - m_e r (7\sqrt{s_{2:2}^{(k)}} - m_e r)}{32\pi r} \right\}.
\]

Numerical problems with \(r \to \infty \) and spectral parameters \(m_e^2 / s_{2:2}^{(k)} = 0 \)
The effective potential for the virtual Delbrück scattering

Asymptotics:

1) Short distances (numerical integration)

\[V_{2:2}(r \ll 1/m_e) \simeq -0.027565(13) \frac{\alpha^2(Z\alpha)^2}{r} \]

2) Large distances (soft photons limit)

\[V_{2:2}(r \gg 1/m_e) \simeq -\frac{59}{2304} \frac{\alpha^2(Z\alpha)^2 m_e}{(m_e r)^4} \]

\[\simeq -0.02561 \frac{\alpha^2(Z\alpha)^2 m_e}{(m_e r)^4} \]
The effective potential for the virtual Delbrück scattering

Original potential

\[
V_{2:2}(r) = \frac{3}{4\pi} \alpha^2 (Z\alpha)^2 \int_0^1 dx \int_0^1 dy \int_0^1 dz \int_0^1 du \int_0^1 dv \int_0^1 dw \int_0^1 dt \sum_{k=1,2} \exp \left(-\frac{m_\epsilon r}{\sqrt{s_{2:2}^{(k)}}} \right) \\
\times \left\{ \frac{B_{2:2}^{(k)}}{4\pi s_{2:2}^{(k)} r^2} + \frac{C_{2:2}^{(k)}}{(s_{2:2}^{(k)})^3} \frac{2s_{2:2}^{(k)} - m_\epsilon r \sqrt{s_{2:2}^{(k)}}}{8\pi r} + \frac{D_{2:2}^{(k)}}{(s_{2:2}^{(k)})^4} \frac{8s_{2:2}^{(k)} - m_\epsilon r (7\sqrt{s_{2:2}^{(k)}} - m_\epsilon r)}{32\pi r} \right\}.
\]

The approximation equation

\[V_{2:2}^{\text{approx}}(r) = -\alpha^2 (Z\alpha)^2 \frac{7.236 + 0.3099x + 2.561x^2}{262.5 + 902.0x + 751.7x^2 + 458.6x^3 + 2.62x^4 + 100x^5} \]

\[x = m_\epsilon r.\]
Summary

The fit for (2:2) in static-muon approximation

\[V_{2:2}^{\text{approx}}(r) = \frac{\alpha^2(Z\alpha)^2}{r} \frac{7.236 + 0.3099x + 2.561x^2}{262.5 + 902.0x + 751.7x^2 + 458.6x^3 + 2.62x^4 + 100x^5} \]

Accuracy of the fit:

- 10^{-3} for $x < 1$
- below 1-2 % for $1 < x < 10$
Summary

Coauthors: Savely Karshenboim, Vladimir Ivanov, Robert Szafron, Valery Shelyuto

Published:

Light-by-light-scattering contributions to the Lamb shift in light muonic atoms

Evgeny Yu. Korzinin and Valery A. Shelyuto
*D. I. Mendeleev Institute for Metrology, St. Petersburg, 190005, Russia
and Pulkovo Observatory, St. Petersburg, 196140, Russia*

Vladimir G. Ivanov
Pulkovo Observatory, St. Petersburg, 196140, Russia

Robert Szafron
Technische Universität München, Fakultät für Physik, 85748 Garching, Germany

Savely G. Karshenboim*
*Ludwig-Maximilians-Universität, Fakultät für Physik, 80799 München, Germany;
Max-Planck-Institut für Quantenoptik, Garching, 85748, Germany;
and Pulkovo Observatory, St. Petersburg, 196140, Russia*
Thank you for your attention!