Towards testing physics beyond the Standard Model with the g factor of bound electrons

Vincent Debierre Christoph H. Keitel Zoltán Harman

International Conference on Precision Physics and Fundamental Physical Constants
Tuesday, June 11, 2019
Goal and context

Search for physics beyond the Standard Model (New Physics):

Goal and context

Search for physics beyond the Standard Model (New Physics):

- Intensity frontier: intense beams (BaBar). Many particles. MeV-GeV
Goal and context

Search for physics beyond the Standard Model (New Physics):

- Intensity frontier: intense beams (BaBar). Many particles. MeV-GeV
- Cosmic frontier: telescopes/detectors (ProtoDUNE). Search dark. MeV-GeV
A brief description of the project

Goal and context

Search for physics beyond the Standard Model (New Physics):

- Intensity frontier: intense beams (BaBar). Many particles. MeV-GeV
- Cosmic frontier: telescopes/detectors (ProtoDUNE). Search dark. MeV-GeV
- Precision frontier: ions (small exp.). Frequency measurements. keV

Development of bound-state QED calculations and experiments

[S. Sturm, F. Köhler, J. Zatorski et al., Nature 506, 467 (2014)]
Goal and context

Search for physics beyond the Standard Model (New Physics):

- **Energy frontier**: particle colliders (LHC). High-energy collisions. TeV
- **Intensity frontier**: intense beams (BaBar). Many particles. MeV-GeV
- **Cosmic frontier**: telescopes/detectors (ProtoDUNE). Search dark. MeV-GeV
- **Precision frontier**: ions (small exp.). Frequency measurements. keV

Development of bound-state QED calculations and experiments

[S. Sturm, F. Köhler, J. Zatorski et al., Nature 506, 467 (2014)]

Using bound-electron g factor (Zeeman splitting) in search for New Physics

- ‘Direct’ method: g-factor measurements compared to Standard Model theory:
 → difference allowed by error bars gives upper limit on New Physics contribution
- ‘Indirect’ method: isotope shifts in the g factor (data to be acquired)
 → properties of data can be used (with care) to constrain New Physics param.
 Implemented with optical transition freq. in singly-charged ions in
 [J.C. Berengut, D. Budker, C. Delaumay, V.V. Flambaum et al., Phys. Rev. Lett. 120, 091801 (2018)]
Magnetic dipole moment μ and g factor of a particle:

$$\mu = g \frac{qJ}{2m}$$

q: charge m: mass J: total angular momentum
The bound-electron g factor

Magnetic dipole moment μ and g factor of a particle:
$$\mu = g \frac{qJ}{2m}$$
q: charge m: mass J: total angular momentum

Calculating the bound-electron g factor
Relativistic quantum mechanics+QED (radiative corrections)
If several e^-: electron interactions
Nuclear structure corrections

Measuring the bound-electron g factor
Penning trap: precision: 10^{-11} for medium-light H-like ions
Excellent agreement with the theory
Soon to come: same precision for medium and heavy H-like ions (e.g. Ca, Xe, Pb)
A candidate for New Physics

A proposed fifth fundamental force

- Massive spinless boson ϕ (mass range unknown)
- Couples electrons to neutrons according to Yukawa potential

\[V_{\phi}(r) = -\frac{\hbar c}{\alpha_{NP}} (A - Z) e^{-m_{\phi} c \hbar |r|} \]

- α_{NP} coupling constant
- m_{ϕ} mass of the boson
A candidate for New Physics

A proposed fifth fundamental force

<table>
<thead>
<tr>
<th>Massive spinless boson ϕ (mass range unknown)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couples electrons to neutrons according to Yukawa potential</td>
</tr>
</tbody>
</table>

Relevance to high-energy physics

- **Electroweak hierarchy problem**: Electroweak force \gg Gravitational force
 Linked to the mass of the Higgs boson (radiative corrections)
 Such scalar bosons could provide a solution to this problem
- They are light (axion-like) dark matter candidates

\[V_\phi(r) = -\frac{\hbar c \alpha_{NP} (A - Z)}{\hbar |r|} \]
A candidate for New Physics

A proposed fifth fundamental force

Massive spinless boson ϕ (mass range unknown)
Couples electrons to neutrons according to Yukawa potential

Relevance to high-energy physics

- **Electroweak hierarchy problem**: Electroweak force \gg Gravitational force
 Linked to the mass of the Higgs boson (radiative corrections)
 Such scalar bosons could provide a solution to this problem
- They are light (axion-like) dark matter candidates

Yukawa potential seen by electrons

$$V_\phi (r) = -\hbar c \alpha_{\text{NP}} (A - Z) \frac{e^{- \frac{m_\phi c}{\hbar} |r|}}{|r|}$$

- α_{NP} coupling constant
- m_ϕ mass of the boson
A candidate for New Physics

A proposed fifth fundamental force

Massive spinless boson ϕ (mass range unknown)
Couples electrons to neutrons according to Yukawa potential

Relevance to high-energy physics

- **Electroweak hierarchy problem**: Electroweak force \gg Gravitational force
 - Linked to the mass of the Higgs boson (radiative corrections)
 - Such scalar bosons could provide a solution to this problem
- They are light (axion-like) dark matter candidates

Yukawa potential seen by electrons

$$V_\phi (r) = -\hbar c \alpha_{NP} (A - Z) \frac{e^{-\frac{m_\phi c}{\hbar}|r|}}{|r|}$$

- α_{NP} coupling constant
- m_ϕ mass of the boson
1 Introduction

2 Direct tests: comparing experiments and theory

3 Isotope shifts: the King representation and ‘New Physics’

4 King tests: isotope shifts in the g factor

5 Outlook
Comparing experiments and theory (& testing New Physics)

Parameters of the hypothetical fifth force

- $\alpha_{NP} = y_e y_n / 4\pi$ coupling constant with y_e & y_n couplings of ‘new’ bosons to electron & neutron
- m_ϕ mass of the boson

Regions above the curves are excluded by corresponding measurements

Comparing experiments and theory (& testing New Physics)

Parameters of the hypothetical fifth force

- $\alpha_{NP} = y_e y_n / 4\pi$ coupling constant with y_e & y_n couplings of ‘new’ bosons to electron & neutron
- m_{ϕ} mass of the boson

Regions above the curves are excluded by corresponding measurements

Consider experimental and theoretical values for the g factor of a given ion
Find the largest discrepancy allowed by the error bars
Set that discrepancy as largest value possible for New Physics contribution to g factor

Implementation with H-like 28Si$^{13+}$

Experiment: $g = 1.995 \ 348 \ 959 \ 10(7)(7)(6)$

Theory: $g = 1.995 \ 348 \ 958 \ 109(584)$
[A. Czarnecki et al., Phys. Rev. Lett. 120, 043203 (2018)]

Contrib. from New Physics is bounded by 1.7×10^{-9}
Comparing experiments and theory (& testing New Physics)

Parameters of the hypothetical fifth force

- \(\alpha_{NP} = \frac{y_ey_n}{4\pi} \) coupling constant
 - with \(y_e \) and \(y_n \) couplings of 'new' bosons to electron and neutron

![Graph showing the coupling constant \(\alpha \) as a function of mediator mass \(m_\phi \) in units of \(m_e \).]

- Regions above the curves are excluded by corresponding measurements.
- Consider experimental and theoretical values for the \(g \) factor of a given ion.
- Find the largest discrepancy allowed by the error bars.
- Set that discrepancy as the largest value possible for the New Physics contribution to the \(g \) factor.

Experiment:
- \(g = 1.99534895910(7)(7)(6) \)

Theory:
- \(g = 1.995348958109(584) \)

Contrib. from New Physics is bounded by 1.7 \times 10^{-9}.
1 Introduction

2 Direct tests: comparing experiments and theory

3 Isotope shifts: the King representation and ‘New Physics’

4 King tests: isotope shifts in the g factor

5 Outlook
Isotope shifts and the King representation

Isotope shift

Isotope shift measures difference in a given quantity between two isotopes of given ion
Isotope shifts and the King representation

Isotope shifts and the King representation

Bounds from the isotope shift in the Li-like Ca17+ g factor

Experiment: [F. Köhler et al., Nat. Commun. 7, 10246 (2016)]

Idea to measure isotope shift in g factor of highly charged ions with super-high precision:

Isotope shifts and the King representation

Isotope shift

Isotope shift measures difference in a given quantity between two isotopes of given ion.

King representation

Take a certain number (≥ 3) of pairs of isotopes.

King plot: Isotope Shift in 2 quantities (x/y axis) 1 point for each pair of isotopes.

E.g. 2 g factors in an ion \(\left(g_A^1 - g_A'^1 \right) / \mu_{AA'} \) and \(\left(g_A^2 - g_A'^2 \right) / \mu_{AA'} \)

Where \(\mu_{AA'} = 1/M_A - 1/M_A' \) inverse reduced mass of nuclei.

(from M. Avgoulea et al., Hyperfine Interact. 171, 217 (2006))

Experimental graph gives a straight line: why?
Isotope shifts at the (Standard Model) leading order

Shift in the g factor of a level i between isotopes A and A'

$$g_i^{AA'} = g_i^A - g_i^{A'}$$

Two largest Standard Model contributions to the isotope shift

- **Leading order** contribution to the mass shift:
 $$K_i \mu_{AA'}$$ where $\mu_{AA'} = 1/M_A - 1/M_{A'}$ inverse reduced mass of nuclei

- **Leading order** contribution to the field shift:
 $$F_i \delta \langle r^2 \rangle_{AA'}$$ where $\delta \langle r^2 \rangle_{AA'}$ difference in nuclear charge radii

F_i and K_i are purely electronic coefficients
Isotope shifts at the (Standard Model) leading order

Shift in the g factor of a level i between isotopes A and A'

$$g_{i}^{AA'} = g_{i}^{A} - g_{i}^{A'}$$

Two largest Standard Model contributions to the isotope shift

- **Leading order contribution to the mass shift:**
 $$K_i \mu_{AA'}$$
 where $\mu_{AA'} = 1/M_A - 1/M_{A'}$ inverse reduced mass of nuclei

- **Leading order contribution to the field shift:**
 $$F_i \delta \langle r^2 \rangle_{AA'}$$
 where $\delta \langle r^2 \rangle_{AA'}$ difference in nuclear charge radii

F_i and K_i are purely electronic coefficients

King plot at the leading order

Take four different isotopes A, A'_1, A'_2, A'_3 & two different e^- states 1 and 2

At the SM leading order

$$\frac{g_{2}^{AA'}}{\mu_{AA'}} = \frac{F_2}{F_1} \frac{g_{1}^{AA'}}{\mu_{AA'}} + \left(K_2 - \frac{F_2}{F_1} K_1 \right)$$

which explains why the Isotope Shift data is linear (previous slide)

If isotope shift $g_{i}^{AA'}$ calculated at leading order → linear graph
The hypothetical fifth force which we consider acts between neutrons and electrons!

Introduce New Physics contribution to g factor

$$g_{i}^{AA'} = K_{i} \mu_{AA'} + F_{i} \delta \langle r^2 \rangle_{AA'} + \alpha_{NP} X_{i} (A - A')$$

where X_{i} is a purely electronic factor (computed on earlier slide).
The hypothetical fifth force which we consider acts between *neutrons* and electrons!

Introduce New Physics contribution to g factor

$$g_i^{AA'} = K_i \mu_{AA'} + F_i \delta \langle r^2 \rangle_{AA'} + \alpha_{NP} X_i (A - A')$$

where X_i is a purely electronic factor (computed on earlier slide)

King plot in the presence of New Physics at the Standard Model leading order

$$\frac{g_2^{AA'}}{\mu_{AA'}} = \frac{F_2}{F_1} \frac{g_1^{AA'}}{\mu_{AA'}} + \left(K_2 - \frac{F_2}{F_1} K_1 \right) + \alpha_{NP} \left(\frac{X_2}{X_1} - \frac{F_2}{F_1} \right) \frac{A - A'}{\mu_{AA'}}$$

At SM leading order: King nonlinearity is a signature of New Physics

→ New Physics can be constrained from

- Experiment: Isotope Shift data
- Theory: New Physics contrib. to g factor

At SM leading order: better exp. precision always

→ better bounds on New Physics
The hypothetical fifth force which we consider acts between neutrons and electrons!

Introduce New Physics contribution to g factor

$$g_{i}^{AA'} = K_{i} \mu_{AA'} + F_{i} \delta \langle r^2 \rangle_{AA'} + \alpha_{NP} X_{i} (A - A')$$

where X_{i} is a purely electronic factor (computed on earlier slide)

For extremely high experimental accuracy: King nonlinearities can be expected to be caused by subleading Standard Model nuclear corrections to the g factor

Higher-order finite nuclear size correction

Nuclear polarisation

Nuclear shape deformation

Higher-order nuclear mass correction

→ Should not be interpreted as New Physics!
1 Introduction

2 Direct tests: comparing experiments and theory

3 Isotope shifts: the King representation and ‘New Physics’

4 King tests: isotope shifts in the g factor

5 Outlook
Tests with the isotope shift:

![Graph showing coupling constant vs mediator mass](image)

- **Si$^{11+/13+}$ WD [Wagner+Yerokhin]**
- **Ca$^{17+/19+}$ IS–NL [@10$^{-11}$]**
- **Ni$^{25+/27+}$ IS–NL [@10$^{-11}$]**
- **Ca$^{17+}$ IS [Köhler]**
- **Si$^{13+}$ [Sturm+Theory]**
- **Ca$^{17+/19+}$ IS–NL [@10$^{-13}$]**
- **Ni$^{23+/27+}$ IS–NL [@10$^{-11}$]**
- **Ca$^{+}$ Freq. IS–NL [Berengut]**
- **Proj. Si$^{13+}$[ALPHATRAP+Theory]**
- **Ca$^{15+/19+}$ IS–NL [@10$^{-11}$]**
- **Ca$^{17+/19+}$ IS–NL [@10$^{-15}$]**
- **Proj. Si$^{11+/13+}$ WD**

Mediator mass m_ϕ [units of m_e]

Coupling constant α
The (specific) weighted difference

\[
\delta \xi_s g = g_{2s_{1/2}} - \xi_s g_{1s_{1/2}} \\
\delta \xi_p g = g_{2p_{1/2}} - \xi_p g_{1s_{1/2}}
\]

\(\xi_s\) and \(\xi_p\) coefficients optimised to cancel the finite-nuclear-size contributions in \(\delta \xi g\)

Goal: more stringent tests of QED

\[\xi_{s_{1/2}} \sim \frac{1}{8}\] \[\xi_{s_{1/2}} \sim \frac{3}{128} (Z\alpha)^2\]
Tests with the isotope shift and the weighted difference
<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th>Direct tests</th>
<th>Isotope shifts (King)</th>
<th>King tests</th>
<th>Outlook</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Direct tests: comparing experiments and theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Isotope shifts: the King representation and ‘New Physics’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>King tests: isotope shifts in the g factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Outlook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

Two main methods to obtain bounds on New Physics from g-factor spectroscopy

- **‘Direct’ method**: g-factor measurements compared to Standard Model theory:
 - some existing bounds but less stringent than other atomic results
 - Improvements envisioned but demand strong progress from theory

- **‘Indirect’ method**: isotope shifts in the g factor
 - data is to be acquired and requires several energy levels and isotopes
 - Competitive bounds possible with realistic exp. precision
Two main methods to obtain bounds on New Physics from \(g \)-factor spectroscopy

- **‘Direct’ method**: \(g \)-factor measurements compared to Standard Model theory:
 - \(\rightarrow \) some existing bounds but less stringent than other atomic results
 - Improvements envisioned but demand strong progress from theory
- **‘Indirect’ method**: isotope shifts in the \(g \) factor
 - \(\rightarrow \) data is to be acquired and requires several energy levels and isotopes
 - Competitive bounds possible with realistic exp. precision

Perspectives

Other proposed types of new particles and interactions

\(\rightarrow \) (they need to affect the bound-electron \(g \) factor)

\(e.g. \): \(B - L \) gauged symmetry, chameleon models
Thank You