

Towards testing physics beyond the Standard Model with the $g\ {\rm factor}\ {\rm of}\ {\rm bound}\ {\rm electrons}$

Vincent Debierre

Christoph H. Keitel

Zoltán Harman

International Conference on Precision Physics and Fundamental Fysical Konstants Tuesday, June 11, 2019

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
•00	0	000		0
	A brief	description of the proje	ct	2

Search for physics beyond the Standard Model (New Physics):

• Energy frontier: particle colliders (LHC). High-energy collisions. TeV

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
● 00	0	000	000	0
	A brief	description of the proje	ct	2

Search for physics beyond the Standard Model (New Physics):

- Energy frontier: particle colliders (LHC). High-energy collisions. TeV
- Intensity frontier: intense beams (BaBar). Many particles. MeV-GeV

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
●OO	0	000	000	0
	A brief	description of the proje	ct	2

Search for physics beyond the Standard Model (New Physics):

- Energy frontier: particle colliders (LHC). High-energy collisions. TeV
- Intensity frontier: intense beams (BaBar). Many particles. MeV-GeV
- Cosmic frontier: telescopes/detectors (ProtoDUNE). Search dark. MeV-GeV

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
•00	O	000		0
	A brief	description of the proje	ct	2

Search for physics beyond the Standard Model (New Physics):

- Energy frontier: particle colliders (LHC). High-energy collisions. TeV
- Intensity frontier: intense beams (BaBar). Many particles. MeV-GeV
- Cosmic frontier: telescopes/detectors (ProtoDUNE). Search dark. MeV-GeV
- Precision frontier: ions (small exp.). Frequency measurements. keV

Development of bound-state QED calculations and experiments
[P.J. Mohr, G. Plunien, G. Soff, Phys. Rep. 293, 227 (1998)]
[V.A. Yerokhin, V.M. Shabaev, Phys. Rev. A 60, 800 (1999)]
[V.A. Yerokhin, K. Pachucki, Z. Harman, C.H. Keitel, Phys. Rev. Lett. 107, 043004 (2011)]
[S. Sturm, F. Köhler, J. Zatorski et al., Nature 506, 467 (2014)]

Introdι ●00	ction Direct tests Isotope shifts (King) King tests 0 000 000	Outlook 0
	A brief description of the project	2
	Goal and context	
	Search for physics beyond the Standard Model (New Physics):	
	 Energy frontier: particle colliders (LHC). High-energy collisions. TeV Intensity frontier: intense beams (BaBar). Many particles. MeV-GeV Cosmic frontier: telescopes/detectors (ProtoDUNE). Search dark. MeV-GeV Precision frontier: ions (small exp.). Frequency measurements. keV 	
	Development of bound-state QED calculations and experiments [P.J. Mohr, G. Plunien, G. Soff, Phys. Rep. 293, 227 (1998)] [V.A. Yerokhin, V.M. Shabaev, Phys. Rev. A 60, 800 (1999)] [V.A. Yerokhin, K. Pachucki, Z. Harman, C.H. Keitel, Phys. Rev. Lett. 107, 043004 (2011)] [S. Sturm, F. Köhler, J. Zatorski <i>et al.</i> , Nature 506, 467 (2014)]	
	Using bound-electron g factor (Zeeman splitting) in search for New Physics	
	 'Direct' method: g-factor measurements compared to Standard Model theory: → difference allowed by error bars gives upper limit on New Physics contribution 	n
	 'Indirect' method: isotope shifts in the g factor (data to be acquired) → properties of data can be used (with care) to constrain New Physics param. Implemented with optical transition freq. in singly-charged ions in [J.C. Berengut, D. Budker, C. Delaumay, V.V. Flambaum <i>et al.</i>, Phys. Rev. Lett. 120, 091801 (2018)] 	

Internal continue Dis

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
○●○	0	000		0
	3			

Introduction	Direct tests 0	Isotope shifts (King) 000	King tests	Outlook 0
	The bound-electron g factor			3

Calculating the bound-electron g factor

Relativistic quantum mechanics+QED (radiative corrections) If several e^- : electron interactions Nuclear structure corrections

Measuring the bound-electron g factor

Penning trap: precision: 10⁻¹¹ for medium-light H-like ions Silicon: [S. Sturm, A. Wagner, B. Schabinger *et al.*, Phys. Rev. Lett. 107, 023002 (2011)] Carbon: [F. Köhler, S. Sturm, A. Kracke *et al.*, J. Phys. B 48, 144032 (2015)] Excellent agreement with the theory Soon to come: same precision for medium and heavy H-like ions (e.g. Ca, Xe, Pb)

Introduction ○○●	Direct tests O	Isotope shifts (King) 000	King tests 000	Outlook 0
	A ca	ndidate for New Physics		4
A propose	d fifth fundamental fo	prce		
Massive st	pinless boson ϕ (mass	range unknown)		

Couples electrons to neutrons according to Yukawa potential

Introduction	Direct tests 0	Isotope shifts (King) 000	King tests	Outlook 0
	A ca	ndidate for New Physics		4
A proposed	fifth fundamental fo	prce		
	lless boson ϕ (mass trons to neutrons a	range unknown) ccording to Yukawa potentia	I	
Relevance to	high-energy physic	S		

- Electroweak hierarchy problem: Electroweak force ≫ Gravitational force Linked to the mass of the Higgs boson (radiative corrections) Such scalar bosons could provide a solution to this problem
- They are light (axion-like) dark matter candidates

Introduction	Direct tests 0	Isotope shifts (King) 000	King tests	Outlook 0
	A ca	ndidate for New Physics		4
A proposed	fifth fundamental fo	prce		
•	nless boson ϕ (mass ctrons to neutrons a	range unknown) ccording to Yukawa potentia	I	
Relevance t	o high-energy physic	CS		
• Elect	roweak hierarchy pro	blem: Electroweak force \gg	Gravitational force	

- Linked to the mass of the Higgs boson (radiative corrections) Such scalar bosons could provide a solution to this problem
- They are light (axion-like) dark matter candidates

Yukawa potential seen by electrons

$$V_{\phi}\left(\mathbf{r}\right) = -\hbar c \, \boldsymbol{\alpha}_{\mathrm{NP}}\left(A - Z\right) \frac{\mathrm{e}^{-\frac{m_{\phi}c}{\hbar}|\mathbf{r}|}}{|\mathbf{r}|}$$

- $\alpha_{\rm NP}$ coupling constant
- m_{ϕ} mass of the boson

Introduction 00●	Direct tests O	Isotope shifts (King) 000	King tests	Outlook 0
	A ca	ndidate for New Physics		4
A proposed	l fifth fundamental fo	prce		
	inless boson ϕ (mass ectrons to neutrons a	range unknown) ccording to Yukawa potentia	I	
Relevance	to high-energy physic	CS		
		blem: Electroweak force ≫		

- Linked to the mass of the Higgs boson (radiative corrections) Such scalar bosons could provide a solution to this problem
- They are light (axion-like) dark matter candidates

Yukawa potential seen by electrons

$$V_{\phi}\left(\mathbf{r}\right) = -\hbar c \, \boldsymbol{\alpha}_{\mathrm{NP}}\left(A - Z\right) \frac{\mathrm{e}^{-\frac{m_{\phi}c}{\hbar}|\mathbf{r}|}}{|\mathbf{r}|}$$

- $\alpha_{\rm NP}$ coupling constant
- m_{ϕ} mass of the boson

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
000	0	000	000	0

2 Direct tests: comparing experiments and theory

3

Parameters of the hypothetical fifth force

- $\alpha_{\rm NP} = y_e y_n / 4\pi$ coupling constant with y_e & y_n couplings of 'new' bosons to electron & neutron
- m_{ϕ} mass of the boson

Regions above the curves are excluded by corresponding measurements

J.C. Berengut *et al.*, Phys. Rev. Lett. **120**, 091801 (2018)

Consider experimental and theoretical values for the g factor of a given ion Find the largest discrepancy allowed by the error bars Set that discrepancy as largest value possible for New Physics contribution to g factor

Implementation with H-like ²⁸Si¹³⁺

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
000	0	000	000	0

2 Direct tests: comparing experiments and theory

3 Isotope shifts: the King representation and 'New Physics'

Introduction 000	Direct tests 0	lsotope shifts (King) ●00	King tests	Outlook 0
	Isotope shi	fts and the King represe	ntation	8

Isotope shift

Isotope shift measures difference in a given quantity between two isotopes of given ion

Experiment: [F. Köhler *et al.*, Nat. Commun. 7, 10246 (2016)] Theory: [V.M. Shabaev *et al.*, Phys. Rev. Lett. 119, 263001 (2017)]

Idea to measure isotope shift in g factor of highly charged ions with super-high precision: [S. Sturm *et al.*, Eur. Phys. J. Special Topics 227, 1425 (2019)]

Introduction 000	Direct tests 0	lsotope shifts (King) ○●○	King tests	Outlook 0
	Isotope shifts at	the (Standard Model)	eading order	9
Shift in	the g factor of a level i	between isotopes A and A'		
		$g_i^{AA^\prime} = g_i^A - g_i^{A^\prime}$		
Two larg	gest <mark>Standard Model</mark> co	ntributions to the isotope sh	ift	
K		$1/M_A - 1/M_{A^\prime}$ inverse redu	ced mass of nuclei	
	eading order contributio $_i\delta\left\langle r^2 ight angle_{AA'}$ where $\delta\left\langle r^2 ight angle$	In to the field shift: $\left< \right>_{AA'}$ difference in nuclear cl	narge radii	
F_i and I	K_i are purely electronic	coefficients		

Introd 000	luction Direct tests Isotope sl ○ ○ ○ ○	hifts (King)	King tests	Outlook 0
	Isotope shifts at the (Stand	ard Model) leading order	9
	Shift in the g factor of a level i between isot	opes A and	A'	
	$g_i^{AA'} = g_i^A$	$^{A}-g_{i}^{A^{\prime }}$		
1	Two largest Standard Model contributions to	the isotope	shift	
	• Leading order contribution to the mass $K_i \mu_{AA'}$ where $\mu_{AA'} = 1/M_A - 1/M_A$	$_{A^{\prime}}$ inverse re	educed mass of nuclei	
	• Leading order contribution to the field $F_i \delta \langle r^2 \rangle_{AA'}$ where $\delta \langle r^2 \rangle_{AA'}$ difference		r charge radii	
	F_i and K_i are purely electronic coefficients			
l	King plot at the leading order			
	Take four different isotopes A , A'_1 , A'_2 , A'_3 &	ک two differe	ent e^- states 1 and 2	
	At the SM leading order	$\mu_{2}^{AA'}/\mu_{AA'}$		
	$\frac{g_2^{AA'}}{\mu_{AA'}} = \frac{F_2}{F_1} \frac{g_1^{AA'}}{\mu_{AA'}} + \left(K_2 - \frac{F_2}{F_1}K_1\right)$		AA'3 AA'2	
	which explains why the Isotope Shift data		AA' ₁	
	is linear (previous slide) If isotope shift $g_i^{AA'}$ calculated at leading			
	order \rightarrow linear graph		> ,	
			$g_1^{AA'}$ /	$\mu_{AA'}$

lootone chifte (King)

Kin

Introduction	Direct tests 0	lsotope shifts (King) ○○●	King tests	Outlook 0
	lsotope shifts an	d New Physics at the I	eading order	10
The hypot	hetical fifth force whi	ich we consider acts betwee	en <u>neutrons</u> and electrons!	
Introduce	New Physics contribu	ition to g factor		
	$g_i^{AA'} = K_i \mu_A$	$_{A'} + F_i \delta \left\langle r^2 \right\rangle_{AA'} + \alpha_{\rm NP} \lambda$	$X_i \left(A - A' \right)$	
where X_i	s a purely electronic	factor (computed on earlie	r slide)	
King plot i	n the presence of Ne	w Physics at the Standard	Model leading order	
<u>5</u> 7	$\frac{g_2^{AA'}}{\mu_{AA'}} = \frac{F_2}{F_1} \frac{g_1^{AA'}}{\mu_{AA'}} +$	$\left(K_2 - \frac{F_2}{F_1}K_1\right) + \alpha_{\rm NP} \left(\frac{2}{2}\right)$	$\frac{X_2}{X_1} - \frac{F_2}{F_1} \left(\frac{A - A'}{\mu_{AA'}} \right)$	
	ading order: King noi ture of New Physics	nlinearity $g_2^{AA'}/\mu_{AA'}$	· · · · ·	

- \rightarrow New Physics can be constrained from
 - Experiment: Isotope Shift data
 - Theory: New Physics contrib. to g factor

At SM leading order: better exp. precision always \rightarrow better bounds on New Physics

Introduction	Direct tests O	lsotope shifts (King) ○○●	King tests	Outlook 0
	Isotope shifts an	d New Physics at the	leading order	10
The h	ypothetical fifth force whi	ch we consider acts betwe	en <u>neutrons</u> and electro	ns!
Introd	uce New Physics contribu	tion to g factor		
	$g_i^{AA'} = K_i \mu_A$	$_{A^{\prime}}+F_{i}\delta\left\langle r^{2} ight angle _{AA^{\prime}}+lpha_{\mathrm{NP}}$	$X_i \left(A - A' \right)$	
where	X_i is a purely electronic	factor (computed on earlie	er slide)	
		ntal accuracy: King nonl tandard Model nuclear o		
Highe	r-order finite nuclear siz	e correction		
	arshenboim and V.G.Ivanov, Pl ar polarisation	hys. Rev. A 97, 022506 (2018)		
	lefiodov, G. Plunien, and G. So ar shape deformation	ff, Phys. Rev. Lett. 89, 081802	2 (2002)]	
	orski, N.S. Oreshkina, C.H. Kei er-order nuclear mass co	tel, and Z. Harman, Phys. Rev. rrection	Lett. 108, 063005 (2012)]	
[K. Pa	hucki, Phys. Rev. A 78, 01250	94 (2008)]		

\rightarrow Should not be interpreted as New Physics!

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
000	0	000	000	0

3 Isotope shifts: the King representation and 'New Physics'

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
	0	000	●○○	0
	Test	s with the isotope shift:		12

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
000	0	000	○●○	0
	The (sp	pecific) weighted differen	ce	13

The weighted difference

$$\delta_{\xi_p}g = g_{2s_{1/2}} - \xi_s g_{1s_{1/2}} \qquad \qquad \delta_{\xi_p}g = g_{2p_{1/2}} - \xi_p g_{1s_{1/2}}$$

 ξ_s and ξ_p coefficients optimised to cancel the finite-nuclear-size contributions in $\delta_{\xi}g$ [V.M. Shabaev, D.A. Glazov, M.N. Shabaeva *et al.*, Phys. Rev. A 65, 062104 (2002)] Goal: more stringent tests of QED

$$\xi_{s_{1/2}} \simeq \frac{1}{8}$$
 $\xi_{s_{1/2}} \simeq \frac{3}{128} (Z\alpha)^2$

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
000	0	000		o

3 Isotope shifts: the King representation and 'New Physics'

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
000	0	000		●
		Outlook		16

Summary

Two main methods to obtain bounds on New Physics from g-factor spectroscopy

- 'Direct' method: g-factor measurements compared to Standard Model theory:
 → some existing bounds but less stringent than other atomic results
 Improvements envisioned but demand strong progress from theory
- 'Indirect' method: isotope shifts in the g factor
 → data is to be acquired and requires several energy levels and isotopes
 Competitive bounds possible with realistic exp. precision

Introduction	Direct tests O	Isotope shifts (King) 000	King tests	Outlook ●
		Outlook		16

Summary

Two main methods to obtain bounds on New Physics from g-factor spectroscopy

- 'Direct' method: g-factor measurements compared to Standard Model theory:
 → some existing bounds but less stringent than other atomic results
 Improvements envisioned but demand strong progress from theory
- 'Indirect' method: isotope shifts in the g factor
 → data is to be acquired and requires several energy levels and isotopes
 Competitive bounds possible with realistic exp. precision

Perspectives

Other proposed types of new particles and interactions \rightarrow (they need to affect the bound-electron g factor) e.g.: B - L gauged symmetry, chameleon models

Introduction	Direct tests	Isotope shifts (King)	King tests	Outlook
000	0	000		0

Thank You