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Introduction: tests of QED with atomic systems

Light atoms (αZ ≪ 1, weak fields):

Tests of QED to lowest orders in αZ.

Heavy few-electron ions (αZ ∼ 1, strong fields):

Tests of QED in nonperturbative in αZ regime.

Low-energy heavy-ion collisions at Z1 + Z2 > 173 (supercritical fields):

Tests of QED in supercritical regime.
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1s Lamb shift in H-like uranium, in eV
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Experiment: 460.2(4.6) eV

(A. Gumberidze, T. Stöhlker, D. Banas et al., PRL, 2005)

Test of QED: ∼ 2%

∗ V.A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006
† Y.S. Kozhedub, O.V. Andreev, V.M. Shabaev et al., PRA, 2008
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2p1/2-2s transition energy in Li-like uranium, in eV
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Experiment: 280.59(10) eV (J. Schweppe et al., PRL, 1991)

280.52(10) eV (C. Brandau et al., PRL, 2003)

280.645(15) eV (P. Beiersdorfer et al., PRL, 2005)

Test of QED: ∼ 0.2%
∗ V.A. Yerokhin, P. Indelicato, and V.M. Shabaev, PRL, 2006
† Y.S. Kozhedub, O.V. Andreev, V.M. Shabaev et al., PRA, 2008
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Current value for the specific HFS difference in Bi

Theoretical contributions to ∆′E = ∆E(2s) − ξ∆E(1s) (in meV) for

µ/µN = 4.1106(2) (A.V. Volotka et al., PRL, 2012; O.V. Andreev et al., PRA, 2012)

Dirac value -31.809

Interel. inter., ∼ 1/Z -29.995

Interel. inter., ∼ 1/Z2 and h.o. 0.255(3)

One-electron QED 0.036

Screened QED 0.193(2)

Total -61.320(6)

Experiment [1] -61.012 (5)(21)

[1] J. Ullmann et al., Nature Communications, 2017.

New calculations of the shielding constant and new NMR

measurements in Bi(NO3)3 and BiF−

6 yielded µ/µN = 4.092(2)

(L. Skripnikov et al., PRL, 2018), which gave ∆′E = −61.043(5)(30) meV.
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Future prospects for the g-factor investigations

1) Tests of bound-state QED at strong fields

For stringent tests of QED in the g-factor experiments, one should

study specific differences of the g factors of H-, Li- and B-like ions.

2) Tests of QED beyond the Furry picture (A.V. Malyshev, V.M. Shabaev,

D.A. Glazov, and I.I. Tupitsyn, JETP Letters, 2017).

3) Determination of the nuclear magnetic moments

gatom = g(e)
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

−
me

mp

g(N)F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
.

4) Determination of the fine structure constant by studying the g factors

of H-, Li-, and B-like ions (V.M. Shabaev et al., PRL, 2006; V.A. Yerokhin et al.,

PRL, 2016).
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QED at supercritical fields

Tunneling ionization in quantum mechanics

V0(x)

Bound state electron

V(x)=V0(x)+eEx

eE

x1 x2

Tunneling ionization

The tunneling probability for a static uniform electric field E:

W ∼ exp
{

−
4π

~

∫ x2

x1

dx
√

2m(V (x)− E)
}

where V (x) = V0(x) + eEx and E is the electron energy.
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QED at supercritical fields

Electron-positron pair creation by a static uniform electric field

 Energy

Positive-energy continuum

Negative-energy continuum

-mc
2
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2
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2

eE

Schwinger  mechanism

The rate of pair production for a static uniform electric field E:

d4ne+e−

d3xdt
∼

c

4π3λC
4 exp

(

−π
Ec

E

)

where λC = ~/(mc) and Ec = m2c3/(e~) ≈ 1.3× 1016V/cm.
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QED at supercritical fields

Electron-positron pair creation by a static electric field

The Schwinger effect has never been observed experimentally as the

required field strength, Ec ≈ 1.3× 1016V/cm, is extremely large. The

recent developments of the laser technologies have triggered a great

interest to theoretical calculations of this effect for various scenarios.
The scenario emplyong two counter-propagating laser pulses is

considered as most favorable. For the recent progress on these

calculations we refer to [I.A. Aleksandrov, G. Plunien, and V.M. Shabaev, PRD,

2017; PRD, 2018].

However, even in the most promising scenarios the electric field
strength reached with new laser technologies in the not too distant
future is expected to be two orders of magnitude smaller than the

critical value. So, this does not seem very encouraging.
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Low-energy heavy-ion collisions

Access to supercritical fields

S.S. Gershtein, Ya.B. Zel’dovich, 1969; W. Pieper, W. Greiner, 1969
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The 1s level dives into the negative-energy continuum at Zcrit ≈ 173.
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Low-energy heavy-ion collisions

Creation of electron-positron pairs in low-energy heavy-ion collisions,
with Z1 + Z2 > 173

Dynamical mechanism: a),b),c). Spontaneous mechanism (vacuum
decay): d). The ground state dives into the negative-energy continuum

for about 10−21 sec.
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Low-energy heavy-ion collisions

Electron-positron pair production in low-energy U-U collisions

Energy distribution of positrons emitted in U-U collisions at energy

E=6.2 MeV/u for the impact parameter in the range: b = 0− 40 fm
(U. Müller, T. de Reus, J. Reinhardt et al., Phys. Rev. A, 1988).
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Low-energy heavy-ion collisions

New method for solving the time-dependent two-center Dirac equation

(I.I. Tupitsyn, Y.S. Kozhedub, V.M. Shabaev et al., PRA, 2010):

i
∂Ψ(~r, t)

∂t
= c(~α · ~p) + β mc2 + V

(A)
nucl(~rA) + V

(B)
nucl(~rB) ,

where ~rA = ~r − ~RA, ~rB = ~r − ~RB.

The time-dependent Dirac wave function is presented as a sum of
atomic-like Dirac-Sturm orbitals localized at the ions.

The method has been tested by calculation of the charge-transfer and
ionization probabilities for low-Z systems and comparison with the
related nonrelativistic results.

Extention of the method to collisions of neutral atoms with H-like ions
and comparison with related experiments: I.I. Tupitsyn et al., PRA, 2012.

An independent method based on solving the time-dependent
two-center Dirac equation in a B-spline basis: I.A. Maltsev et al., Phys. Scr.

2013; PRA, 2015; PRA 2018.
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Low-energy heavy-ion collisions

Electron-positron pair production in low-energy U-U collisions
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Energy distribution of positrons emitted in U-U collisions at energy

E=6.2 MeV/u for the impact parameter in the range: b = 0− 40 fm
(I.A. Maltsev et al., PRA, 2015).
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Low-energy heavy-ion collisions

Pair creation beyond the monopole approximation

U-U, Ecm = 740 MeV

Expected number of created pairs as a function of the impact
parameter b

(I.A. Maltsev et al., PRA, 2018) .

b (fm) Monopole approximation Two-center approach

0 1.29 × 10−2 1.38 × 10−2

10 7.26 × 10−3 8.01 × 10−3

20 2.75 × 10−3 3.46 × 10−3

30 1.04 × 10−3 1.42 × 10−3

40 4.12 × 10−4 7.04 × 10−4

The two-center result for b = 0 has been confirmed by a different
method (R.V. Popov et al., EPJD, 2018) .
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Low-energy heavy-ion collisions

Pair creation beyond the monopole approximation

Positron energy spectrum for the U−U head-on collision at energy
Ecm = 740 MeV (I.A. Maltsev et al., PRA, 2018).
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Low-energy heavy-ion collisions
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Pair creation with artificial trajectories for the supercritical U−U and
subcritical Fr−Fr head-on collisions at Ecm = 674.5 and
Ecm = 740 MeV, respectively. The trajectory Rα(t) is defined by

Ṙα(t) = αṘ(t), where R(t) is the classical Rutherford trajectory
(I.A. Maltsev et al., PRA, 2015).
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Low-energy heavy-ion collisions
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Positron energy spectrum for the Fr−Fr, U−U, and Db−Db head-on
collisions at energies 674.5, 740, and 928.4 MeV, respectively
(I.A. Maltsev et al., 2015).
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Low-energy heavy-ion collisions
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Number of created pairs P in the head-on collision of identical nuclei as
a function of the nuclear charge ZA = ZB = Z for the projectile energy

E0 = 6.2 MeV/u in the nuclear rest frame (I.A. Maltsev et al., PRA, 2015).
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Low-energy heavy-ion collisions

How to observe the vacuum decay
(I.A. Maltsev, V.M. Shabaev, R.V. Popov, Yu.S. Kozhedub,

G. Plunien, X. Ma, and Th. Stöhlker, arXiv: 1903.08546.)

Let us choose the impact parameter b(E) in such a way, that the

minimal internuclear distance rmin remains the same (in a.u.):

b2 = r2min − rmin
Z1Z2

E
,

where

E ≥
Z1Z2

rmin
.

For head-on collision (b = 0):

E0 =
Z1Z2

rmin
.
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Low-energy heavy-ion collisions
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Low-energy heavy-ion collisions
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Low-energy heavy-ion collisions
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for the U−U collision as a function of the collision energy.
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Low-energy heavy-ion collisions
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Low-energy heavy-ion collisions
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Conclusion

Investigations of heavy ions at low-energy regime can provide:

• Tests of QED at strong coupling regime within and beyond the
Furry picture

• Determination of the fundamental constants

• Observing the vacuum decay in supercritical fields
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